1
0
Fork 0
forked from len0rd/rockbox

Updated TCC780x NAND driver. Still work-in-progress but lots better than the previous version.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@16878 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Rob Purchase 2008-03-29 17:18:53 +00:00
parent 4fd277481a
commit edf6d90ca4

View file

@ -18,14 +18,18 @@
****************************************************************************/
#include "ata.h"
#include "ata-target.h"
#include "ata_idle_notify.h"
#include "system.h"
#include <string.h>
#include "thread.h"
#include "led.h"
#include "disk.h"
#include "panic.h"
#include "usb.h"
/* The NAND driver is currently work-in-progress and as such contains
some dead code and debug stuff, such as the next few lines. */
#if defined(BOOTLOADER)
#include "../../../../bootloader/common.h" /* for printf */
extern int line;
#endif
/* for compatibility */
int ata_spinup_time = 0;
@ -58,6 +62,21 @@ static struct mutex ata_mtx NOCACHEBSS_ATTR;
#define NFC_CS1 (1<<22)
#define NFC_READY (1<<20)
#define ECC_CTRL (*(volatile unsigned long *)0xF005B000)
#define ECC_BASE (*(volatile unsigned long *)0xF005B004)
#define ECC_CLR (*(volatile unsigned long *)0xF005B00C)
#define ECC_MLC0W (*(volatile unsigned long *)0xF005B030)
#define ECC_MLC1W (*(volatile unsigned long *)0xF005B034)
#define ECC_MLC2W (*(volatile unsigned long *)0xF005B038)
#define ECC_ERR (*(volatile unsigned long *)0xF005B070)
#define ECC_ERRADDR (*(volatile unsigned long *)0xF005B050)
#define ECC_ERRDATA (*(volatile unsigned long *)0xF005B060)
/* ECC_CTRL flags */
#define ECC_M4EN (1<<6)
#define ECC_ENC (1<<27)
#define ECC_READY (1<<26)
/* Chip characteristics, initialised by nand_get_chip_info() */
static int page_size = 0;
@ -71,20 +90,79 @@ static int total_banks = 0;
static int sectors_per_page = 0;
static int bytes_per_segment = 0;
static int sectors_per_segment = 0;
static int segments_per_bank = 0;
/* Maximum values for static buffers */
#define MAX_PAGE_SIZE 4096
#define MAX_SPARE_SIZE 128
#define MAX_BLOCKS_PER_BANK 8192
#define MAX_BANKS 4
#define MAX_PAGES_PER_BLOCK 128
/*
Block translation table - maps logical Segment Number to physical page address
Format: 0xBTPPPPPP (B = Bank; T = Block Type flag; P = Page Address)
*/
static int segment_location[MAX_BLOCKS_PER_BANK * MAX_BANKS / 4];
/* In theory we can support 4 banks, but only 2 have been seen on 2/4/8Gb D2s. */
#ifdef COWON_D2
#define MAX_BANKS 2
#else
#define MAX_BANKS 4
#endif
#define MAX_SEGMENTS (MAX_BLOCKS_PER_BANK * MAX_BANKS / 4)
/* Logical/Physical translation table */
struct lpt_entry
{
short chip;
short phys_segment;
//short segment_flag;
};
static struct lpt_entry lpt_lookup[MAX_SEGMENTS];
/* Write Caches */
#define MAX_WRITE_CACHES 8
struct write_cache
{
short chip;
short phys_segment;
short log_segment;
short page_map[MAX_PAGES_PER_BLOCK * 4];
};
static struct write_cache write_caches[MAX_WRITE_CACHES];
static int write_caches_in_use = 0;
/* Read buffer */
unsigned int page_buf[(MAX_PAGE_SIZE + MAX_SPARE_SIZE) / 4];
/* Conversion functions */
static inline int phys_segment_to_page_addr(int phys_segment, int page_in_seg)
{
int page_addr = phys_segment * pages_per_block * 2;
if (page_in_seg & 1)
{
/* Data is located in block+1 */
page_addr += pages_per_block;
}
if (page_in_seg & 2)
{
/* Data is located in second plane */
page_addr += (blocks_per_bank/2) * pages_per_block;
}
page_addr += page_in_seg/4;
return page_addr;
}
/* NAND physical access functions */
static void nand_chip_select(int chip)
{
@ -123,6 +201,8 @@ static void nand_chip_select(int chip)
static void nand_read_id(int chip, unsigned char* id_buf)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
@ -147,12 +227,11 @@ static void nand_read_id(int chip, unsigned char* id_buf)
NFC_CMD = 0x90;
NFC_SADDR = 0x00;
/* Read the 5 single bytes */
id_buf[0] = NFC_SDATA & 0xFF;
id_buf[1] = NFC_SDATA & 0xFF;
id_buf[2] = NFC_SDATA & 0xFF;
id_buf[3] = NFC_SDATA & 0xFF;
id_buf[4] = NFC_SDATA & 0xFF;
/* Read the 5 chip ID bytes */
for (i = 0; i < 5; i++)
{
id_buf[i] = NFC_SDATA & 0xFF;
}
nand_chip_select(-1);
@ -213,15 +292,10 @@ static void nand_read_uid(int chip, unsigned int* uid_buf)
}
/* NB: size must be divisible by 4 due to 32-bit read */
static void nand_read_raw(int chip, int row, int column, int size, void* buf)
{
int i;
/* Currently this relies on a word-aligned input buffer */
unsigned int* int_buf = (unsigned int*)buf;
if ((unsigned int)buf & 3) panicf("nand_read_raw() non-aligned input buffer");
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
@ -260,9 +334,22 @@ static void nand_read_raw(int chip, int row, int column, int size, void* buf)
while (!(NFC_CTRL & NFC_READY)) {};
/* Read data into page buffer */
for (i = 0; i < (size/4); i++)
if (((unsigned int)buf & 3) || (size & 3))
{
int_buf[i] = NFC_WDATA;
/* Use byte copy since either the buffer or size are not word-aligned */
/* TODO: Byte copy only where necessary (use words for mid-section) */
for (i = 0; i < size; i++)
{
((unsigned char*)buf)[i] = NFC_SDATA;
}
}
else
{
/* Use 4-byte copy as buffer and size are both word-aligned */
for (i = 0; i < (size/4); i++)
{
((unsigned int*)buf)[i] = NFC_WDATA;
}
}
nand_chip_select(-1);
@ -272,45 +359,6 @@ static void nand_read_raw(int chip, int row, int column, int size, void* buf)
}
/* NB: Output buffer must currently be word-aligned */
static bool nand_read_sector(int segment, int sector, void* buf)
{
int physaddr = segment_location[segment];
int bank = physaddr >> 28;
int page = physaddr & 0xffffff;
int page_in_seg = sector / sectors_per_page;
int sec_in_page = sector % sectors_per_page;
/* TODO: Check if there are any 0x15 pages referring to this segment/sector
combination. If present we need to read that data instead. */
if (physaddr == -1) return false;
if (page_in_seg & 1)
{
/* Data is located in block+1 */
page += pages_per_block;
}
if (page_in_seg & 2)
{
/* Data is located in second plane */
page += (blocks_per_bank/2) * pages_per_block;
}
page += page_in_seg/4;
nand_read_raw(bank, page,
sec_in_page * (SECTOR_SIZE+16),
SECTOR_SIZE, buf);
/* TODO: Read the 16 spare bytes, perform ECC correction */
return true;
}
static void nand_get_chip_info(void)
{
bool found = false;
@ -362,6 +410,7 @@ static void nand_get_chip_info(void)
}
pages_per_bank = blocks_per_bank * pages_per_block;
segments_per_bank = blocks_per_bank / 4;
bytes_per_segment = page_size * pages_per_block * 4;
sectors_per_page = page_size / SECTOR_SIZE;
sectors_per_segment = bytes_per_segment / SECTOR_SIZE;
@ -406,96 +455,237 @@ static void nand_get_chip_info(void)
total_banks = 1;
}
/* Check block 0, page 0 for "BMPM" string & total_banks byte. If this is
confirmed for all D2s we can remove the above code & nand_read_uid(). */
/*
Sanity checks:
1. "BMP" tag at block 0, page 0, offset <page_size> [always present]
2. Byte at <page_size>+4 contains number of banks [or 0xff if 1 bank]
If this is confirmed for all D2s we can simplify the above code and
also remove the icky nand_read_uid() function.
*/
nand_read_raw(0, /* bank */
0, /* page */
page_size, /* offset */
8, id_buf);
if (strncmp(id_buf, "BMPM", 4)) panicf("BMPM tag not present");
if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch");
if (strncmp(id_buf, "BMP", 3)) panicf("BMP tag not present");
if (total_banks > 1)
{
if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch");
}
}
/* TEMP testing function */
static bool nand_read_sector_of_phys_page(int chip, int page,
int sector, void* buf)
{
nand_read_raw(chip, page,
sector * (SECTOR_SIZE+16),
SECTOR_SIZE, buf);
/* TODO: Read the 16 spare bytes, perform ECC correction */
return true;
}
static bool nand_read_sector_of_phys_segment(int chip, int phys_segment,
int page_in_seg, int sector,
void* buf)
{
int page_addr = phys_segment_to_page_addr(phys_segment,
page_in_seg);
return nand_read_sector_of_phys_page(chip, page_addr, sector, buf);
}
static bool nand_read_sector_of_logical_segment(int log_segment, int sector,
void* buf)
{
int page_in_segment = sector / sectors_per_page;
int sector_in_page = sector % sectors_per_page;
int chip = lpt_lookup[log_segment].chip;
int phys_segment = lpt_lookup[log_segment].phys_segment;
/* Check if any of the write caches refer to this segment/page.
If present we need to read the cached page instead. */
int cache_num = 0;
bool found = false;
while (!found && cache_num < write_caches_in_use)
{
if (write_caches[cache_num].log_segment == log_segment
&& write_caches[cache_num].page_map[page_in_segment] != -1)
{
found = true;
chip = write_caches[cache_num].chip;
phys_segment = write_caches[cache_num].phys_segment;
page_in_segment = write_caches[cache_num].page_map[page_in_segment];
}
else
{
cache_num++;
}
}
return nand_read_sector_of_phys_segment(chip, phys_segment,
page_in_segment,
sector_in_page, buf);
}
#if 0 // LPT table is work-in-progress
static void read_lpt_block(int chip, int phys_segment)
{
int page = 1; /* table starts at page 1 of segment */
bool cont = true;
struct lpt_entry* lpt_ptr = NULL;
while (cont && page < pages_per_block)
{
int i = 0;
nand_read_sector_of_phys_segment(chip, phys_segment,
page, 0, /* only sector 0 is used */
page_buf);
/* Find out which chunk of the LPT table this section contains.
Do this by reading the logical segment number of entry 0 */
if (lpt_ptr == NULL)
{
int first_chip = page_buf[0] / segments_per_bank;
int first_phys_segment = page_buf[0] % segments_per_bank;
unsigned char spare_buf[16];
nand_read_raw(first_chip,
phys_segment_to_page_addr(first_phys_segment, 0),
SECTOR_SIZE, /* offset */
16, spare_buf);
int first_log_segment = (spare_buf[6] << 8) | spare_buf[7];
lpt_ptr = &lpt_lookup[first_log_segment];
#if defined(BOOTLOADER) && 1
printf("lpt @ %lx:%lx (ls:%lx)",
first_chip, first_phys_segment, first_log_segment);
#endif
}
while (cont && (i < SECTOR_SIZE/4))
{
if (page_buf[i] != 0xFFFFFFFF)
{
lpt_ptr->chip = page_buf[i] / segments_per_bank;
lpt_ptr->phys_segment = page_buf[i] % segments_per_bank;
lpt_ptr++;
i++;
}
else cont = false;
}
page++;
}
}
#endif
static void read_write_cache_segment(int chip, int phys_segment)
{
int page;
unsigned char spare_buf[16];
if (write_caches_in_use == MAX_WRITE_CACHES)
panicf("Max NAND write caches reached");
write_caches[write_caches_in_use].chip = chip;
write_caches[write_caches_in_use].phys_segment = phys_segment;
/* Loop over each page in the phys segment (from page 1 onwards).
Read spare for 1st sector, store location of page in array. */
for (page = 1; page < pages_per_block * 4; page++)
{
unsigned short cached_page;
unsigned short log_segment;
nand_read_raw(chip, phys_segment_to_page_addr(phys_segment, page),
SECTOR_SIZE, /* offset to first sector's spare */
16, spare_buf);
cached_page = (spare_buf[3] << 8) | spare_buf[2]; /* why does endian */
log_segment = (spare_buf[6] << 8) | spare_buf[7]; /* -ness differ? */
if (cached_page != 0xFFFF)
{
write_caches[write_caches_in_use].log_segment = log_segment;
write_caches[write_caches_in_use].page_map[cached_page] = page;
}
}
write_caches_in_use++;
}
/* TEMP testing functions */
#ifdef BOOTLOADER
#include "lcd.h"
extern int line;
unsigned int buf[(MAX_PAGE_SIZE + MAX_SPARE_SIZE) / 4];
#if 0
static void display_page(int chip, int page)
{
int i;
nand_read_raw(chip, page, 0, page_size+spare_size, page_buf);
for (i = 0; i < (page_size+spare_size)/4; i += 132)
{
int j,interesting = 0;
line = 1;
printf("c:%d p:%lx s:%d", chip, page, i/128);
for (j=i; j<(i+131); j++)
{
if (page_buf[j] != 0xffffffff) interesting = 1;
}
if (interesting)
{
for (j=i; j<(i+131); j+=8)
{
printf("%lx %lx %lx %lx %lx %lx %lx %lx",
page_buf[j],page_buf[j+1],page_buf[j+2],page_buf[j+3],
page_buf[j+4],page_buf[j+5],page_buf[j+6],page_buf[j+7]);
}
while (!button_read_device()) {};
while (button_read_device()) {};
reset_screen();
}
}
}
#endif
static void nand_test(void)
{
int i;
unsigned int seq_segments = 0;
#if 0
int chip,page;
#endif
int segment = 0;
printf("%d banks", total_banks);
printf("* %d pages", pages_per_bank);
printf("* %d bytes per page", page_size);
i = 0;
while (segment_location[i] != -1
&& i++ < (blocks_per_bank * total_banks / 4))
while (lpt_lookup[segment].chip != -1
&& segment < segments_per_bank * total_banks)
{
seq_segments++;
segment++;
}
printf("%d sequential segments found (%dMb)", seq_segments,
(seq_segments*bytes_per_segment)>>20);
while (!button_read_device()) {};
while (button_read_device()) {};
#if 0
/* Read & display sequential pages */
for (chip = 0; chip < total_banks; chip++)
{
for (page = 0x0; page < 0x100; page++)
{
nand_read_raw(chip, page, 0, page_size+spare_size, buf);
for (i = 0; i < (page_size+spare_size)/4; i += 132)
{
int j,interesting = 0;
line = 0;
printf("c:%d p:%lx i:%d", chip, page, i);
for (j=i; j<(i+131); j++)
{
if (buf[j] != 0xffffffff) interesting = 1;
}
if (interesting)
{
for (j=i; j<(i+63); j+=4)
{
printf("%lx %lx %lx %lx",
buf[j], buf[j+1], buf[j+2], buf[j+3]);
}
printf("--->");
while (!button_read_device()) {};
while (button_read_device()) {};
line = 1;
printf("<---");
for (j=j; j<(i+131); j+=4)
{
printf("%lx %lx %lx %lx",
buf[j], buf[j+1], buf[j+2], buf[j+3]);
}
while (!button_read_device()) {};
while (button_read_device()) {};
reset_screen();
}
}
}
}
#endif
printf("%d sequential segments found (%dMb)",
segment, (unsigned)(segment*bytes_per_segment)>>20);
}
#endif
@ -523,7 +713,7 @@ int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount,
while (incount > 0 && secmod < sectors_per_segment)
{
if (!nand_read_sector(segment, secmod, inbuf))
if (!nand_read_sector_of_logical_segment(segment, secmod, inbuf))
{
mutex_unlock(&ata_mtx);
return -1;
@ -554,7 +744,7 @@ int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
(void)start;
(void)count;
(void)outbuf;
return 0;
return -1;
}
void ata_spindown(int seconds)
@ -600,81 +790,81 @@ void ata_enable(bool on)
int ata_init(void)
{
int i, bank, page;
unsigned int spare_buf[4];
int i, bank, phys_segment;
unsigned char spare_buf[16];
if (initialized) return 0;
/* Get chip characteristics and number of banks */
nand_get_chip_info();
for (i = 0; i < (MAX_BLOCKS_PER_BANK * MAX_BANKS / 4); i++)
for (i = 0; i < MAX_SEGMENTS; i++)
{
segment_location[i] = -1;
lpt_lookup[i].chip = -1;
lpt_lookup[i].phys_segment = -1;
//lpt_lookup[i].segment_flag = -1;
}
write_caches_in_use = 0;
for (i = 0; i < MAX_WRITE_CACHES; i++)
{
int page;
write_caches[i].log_segment = -1;
write_caches[i].chip = -1;
write_caches[i].phys_segment = -1;
for (page = 0; page < MAX_PAGES_PER_BLOCK * 4; page++)
{
write_caches[i].page_map[page] = -1;
}
}
/* Scan banks to build up block translation table */
for (bank = 0; bank < total_banks; bank++)
{
for (page = 0; page < pages_per_bank/2; page += pages_per_block*2)
for (phys_segment = 0; phys_segment < segments_per_bank; phys_segment++)
{
unsigned char segment_flag;
unsigned char stored_flag;
unsigned short segment_id;
unsigned char* buf_ptr = (unsigned char*)spare_buf;
/* Read spare bytes from first sector of each segment */
nand_read_raw(bank, page,
nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, 0),
SECTOR_SIZE, /* offset */
16, spare_buf);
segment_id = (buf_ptr[6] << 8) | buf_ptr[7];
segment_flag = buf_ptr[4];
stored_flag = (segment_location[segment_id] >> 24) & 0xf;
#if defined(BOOTLOADER) && 0
if (segment_flag == 0x15)
switch (spare_buf[4]) /* block type */
{
printf("Segment %lx: c:%lx p:%lx, type:%lx, stored:x%lx",
segment_id, bank, page, segment_flag, stored_flag);
while (!button_read_device()) {};
while (button_read_device()) {};
}
#endif
if (segment_flag == 0x13 || segment_flag == 0x17)
{
if (segment_id < (blocks_per_bank * total_banks / 4))
case 0x12:
{
#if defined(BOOTLOADER) && 0
if (segment_location[segment_id] != -1 && stored_flag != 0x3)
{
int orig_bank = segment_location[segment_id] >> 28;
int orig_page = segment_location[segment_id] & 0xFFFFFF;
printf("Segment %d already set! (stored flag:x%lx)",
segment_id, stored_flag);
printf("0x%08x 0x%08x 0x%08x 0x%08x",
spare_buf[0],spare_buf[1],spare_buf[2],spare_buf[3]);
nand_read_raw(orig_bank, orig_page,
SECTOR_SIZE,
16, spare_buf);
printf("0x%08x 0x%08x 0x%08x 0x%08x",
spare_buf[0],spare_buf[1],spare_buf[2],spare_buf[3]);
}
#endif
/* Write bank, block type & physical address into table */
segment_location[segment_id]
= page | (bank << 28) | ((segment_flag & 0xf) << 24);
/* Log->Phys Translation table (for Main data area) */
//read_lpt_block(bank, phys_segment);
break;
}
else
case 0x13:
case 0x17:
{
panicf("Invalid segment id:%d found", segment_id);
/* Main data area segment */
int segment = (spare_buf[6] << 8) | spare_buf[7];
if (segment < MAX_SEGMENTS)
{
/* Store in LPT if not present or 0x17 overrides 0x13 */
//if (lpt_lookup[segment].segment_flag == -1 ||
// lpt_lookup[segment].segment_flag == 0x13)
{
lpt_lookup[segment].chip = bank;
lpt_lookup[segment].phys_segment = phys_segment;
//lpt_lookup[segment].segment_flag = spare_buf[4];
}
}
break;
}
case 0x15:
{
/* Recently-written page data (for Main data area) */
read_write_cache_segment(bank, phys_segment);
break;
}
}
}