1
0
Fork 0
forked from len0rd/rockbox

nwztools: cleanup the code

There was a lot of copy and paste, and the code was just crap. This commit tries
to clarify the code and also document the encryption procedure. Hopefully I didn't
break anything.

Change-Id: I257793010e7cf94f2b090b30bb8608359d3886e3
This commit is contained in:
Amaury Pouly 2016-08-30 17:19:30 +10:00
parent de8950d63d
commit cf82f208e3
6 changed files with 291 additions and 298 deletions

View file

@ -28,8 +28,9 @@ extern "C" {
#endif
#define NWZ_KAS_SIZE 32
#define NWZ_KEYSIG_SIZE 51
#define NWZ_KEYSIG_SIZE 16
#define NWZ_KEY_SIZE 8
#define NWZ_SIG_SIZE 8
#define NWZ_EXPKEY_SIZE (NWZ_KEY_SIZE * NWZ_KEY_SIZE)
#define NWZ_DES_BLOCK 8

View file

@ -22,8 +22,24 @@
#include "misc.h"
#include "mg.h"
#include <string.h>
#include <stdio.h>
#define HEX_MAJ
/* Key search methods
*
* This code tries to find the key and signature of a device using an upgrade
* file. It more or less relies on brute force and makes the following assumptions.
* It assumes the key and the signature are hexadecimal strings (it appears to be
* true thus far). The code lists all possible keys and decrypts the first
* 8 bytes of the file. If the decrypted signature happens to be an hex string,
* the code reports the key and signature as potentially valid. Note that some
* key/sig pairs may not be valid but since the likelyhood of decrypting a
* random 8-byte sequence using an hex string key and to produce an hex string
* is very small, there should be almost no false positive.
*
* Since the key is supposedly random, the code starts by looking at "balanced"
* keys: keys with slightly more digits (0-9) than letters (a-f) and then moving
* towards very unbalanced strings (only digits or only letters).
*/
static uint8_t g_cipher[8];
static keysig_notify_fn_t g_notify;
@ -31,11 +47,10 @@ static uint8_t g_key[8];
static void *g_user;
static bool is_hex[256];
static bool is_init = false;
#ifdef HEX_MAJ
static char hex_digits[] = "02468ABEF";
#else
static char hex_digits[] = "02468abef";
#endif
static uint64_t g_tot_count;
static uint64_t g_cur_count;
static int g_last_percent;
static int g_last_subpercent;
static void keysig_search_init()
{
@ -44,11 +59,7 @@ static void keysig_search_init()
memset(is_hex, 0, sizeof(is_hex));
for(int i = '0'; i <= '9'; i++)
is_hex[i] = true;
#ifdef HEX_MAJ
for(int i = 'A'; i <= 'F'; i++)
#else
for(int i = 'a'; i <= 'f'; i++)
#endif
is_hex[i] = true;
}
@ -63,6 +74,24 @@ static inline bool is_full_ascii(uint8_t *arr)
static inline bool check_stupid()
{
uint8_t res[8];
// display progress
g_cur_count++;
int percent = (g_cur_count * 100ULL) / g_tot_count;
int subpercent = ((g_cur_count * 1000ULL) / g_tot_count) % 10;
if(percent != g_last_percent)
{
cprintf(RED, "%d%%", percent);
fflush(stdout);
g_last_subpercent = 0;
}
if(subpercent != g_last_subpercent)
{
cprintf(WHITE, ".");
fflush(stdout);
}
g_last_percent = percent;
g_last_subpercent = subpercent;
mg_decrypt_fw(g_cipher, 8, res, g_key);
if(is_full_ascii(res))
return g_notify(g_user, g_key, res);
@ -75,7 +104,7 @@ static bool search_stupid_rec(int rem_digit, int rem_letter, int pos)
return check_stupid();
if(rem_digit > 0)
{
for(int i = '0'; i <= '9'; i += 2)
for(int i = '0'; i <= '9'; i++)
{
g_key[pos] = i;
if(search_stupid_rec(rem_digit - 1, rem_letter, pos + 1))
@ -84,11 +113,7 @@ static bool search_stupid_rec(int rem_digit, int rem_letter, int pos)
}
if(rem_letter > 0)
{
#ifdef HEX_MAJ
for(int i = 'a' - 1; i <= 'f'; i += 2)
#else
for(int i = 'A' - 1; i <= 'F'; i += 2)
#endif
for(int i = 'a' - 1; i <= 'f'; i++)
{
g_key[pos] = i;
if(search_stupid_rec(rem_digit, rem_letter - 1, pos + 1))
@ -100,6 +125,12 @@ static bool search_stupid_rec(int rem_digit, int rem_letter, int pos)
static bool search_stupid(int rem_digit, int rem_letter)
{
cprintf(WHITE, "\n Looking for keys with ");
cprintf(RED, "%d", rem_digit);
cprintf(WHITE, " digits and ");
cprintf(RED, "%d", rem_letter);
cprintf(WHITE, " letters...");
fflush(stdout);
return search_stupid_rec(rem_digit, rem_letter, 0);
}
@ -109,28 +140,35 @@ bool keysig_search_ascii_stupid(uint8_t *cipher, keysig_notify_fn_t notify, void
memcpy(g_cipher, cipher, 8);
g_notify = notify;
g_user = user;
#if 1
return search_stupid(4, 4) ||
search_stupid(3, 5) || search_stupid(5, 3) ||
search_stupid(2, 6) || search_stupid(6, 2) ||
search_stupid(1, 7) || search_stupid(7, 1) ||
search_stupid(0, 8) || search_stupid(8, 0);
#else
#define do(i) for(int a##i = 0; a##i < sizeof(hex_digits); a##i++) { g_key[i] = hex_digits[a##i];
#define od() }
do(0)do(1)do(2)do(3)do(4)do(5)do(6)do(7)
if(check_stupid()) return true;
od()od()od()od()od()od()od()od()
#undef do
#undef od
return false;
#endif
// compute number of possibilities
g_cur_count = 0;
g_tot_count = 1;
g_last_percent = -1;
for(int i = 0; i < 8; i++)
g_tot_count *= 16ULL;
cprintf(WHITE, " Search space:");
cprintf(RED, " %llu", (unsigned long long)g_tot_count);
// sorted by probability:
bool ret = search_stupid(5, 3) // 5 digits, 3 letters: 0.281632
|| search_stupid(6, 2) // 6 digits, 2 letters: 0.234693
|| search_stupid(4, 4) // 4 digits, 4 letters: 0.211224
|| search_stupid(7, 1) // 7 digits, 1 letters: 0.111759
|| search_stupid(3, 5) // 3 digits, 5 letters: 0.101388
|| search_stupid(2, 6) // 2 digits, 6 letters: 0.030416
|| search_stupid(8, 0) // 8 digits, 0 letters: 0.023283
|| search_stupid(1, 7) // 1 digits, 7 letters: 0.005214
|| search_stupid(0, 8);// 0 digits, 8 letters: 0.000391
cprintf(OFF, "\n");
return ret;
}
bool keysig_search_ascii_brute(uint8_t *cipher, keysig_notify_fn_t notify, void *user)
{
(void) cipher;
(void) notify;
(void) user;
keysig_search_init();
cprintf(RED, "Unimplemented\n");
return false;
}
@ -144,9 +182,9 @@ struct keysig_search_desc_t keysig_search_desc[KEYSIG_SEARCH_LAST] =
},
[KEYSIG_SEARCH_ASCII_STUPID] =
{
.name = "ascii-stupid",
.name = "ascii-hex",
.fn = keysig_search_ascii_stupid,
.comment = "Try to find a balance ascii key ignoring lsb"
.comment = "Try to find an hexadecimal ascii string keysig"
},
[KEYSIG_SEARCH_ASCII_BRUTE] =
{

View file

@ -23,6 +23,7 @@
#include <stdbool.h>
#include <stdint.h>
#include "fwp.h"
enum keysig_search_method_t
{
@ -34,7 +35,8 @@ enum keysig_search_method_t
};
/* notify returns true if the key seems ok */
typedef bool (*keysig_notify_fn_t)(void *user, uint8_t key[8], uint8_t sig[8]);
typedef bool (*keysig_notify_fn_t)(void *user, uint8_t key[NWZ_KEY_SIZE],
uint8_t sig[NWZ_SIG_SIZE]);
/* returns true if a key was accepted by notify */
typedef bool (*keysig_search_fn_t)(uint8_t *cipher, keysig_notify_fn_t notify, void *user);

View file

@ -31,6 +31,7 @@ char RED[] = { 0x1b, 0x5b, 0x31, 0x3b, '3', '1', 0x6d, '\0' };
char GREEN[] = { 0x1b, 0x5b, 0x31, 0x3b, '3', '2', 0x6d, '\0' };
char YELLOW[] = { 0x1b, 0x5b, 0x31, 0x3b, '3', '3', 0x6d, '\0' };
char BLUE[] = { 0x1b, 0x5b, 0x31, 0x3b, '3', '4', 0x6d, '\0' };
char WHITE[] = { 0x1b, 0x5b, 0x31, 0x3b, '3', '7', 0x6d, '\0' };
static bool g_color_enable = true;

View file

@ -34,7 +34,7 @@
typedef char color_t[];
extern color_t OFF, GREY, RED, GREEN, YELLOW, BLUE;
extern color_t OFF, GREY, RED, GREEN, YELLOW, BLUE, WHITE;
void *xmalloc(size_t s);
void color(color_t c);
void enable_color(bool enable);

View file

@ -69,9 +69,9 @@ struct nwz_model_t
{
const char *model;
unsigned flags;
char kas[NWZ_KAS_SIZE]; /* key and signature */
char key[8];
char sig[8];
char *kas;
char *key;
char *sig;
};
struct upg_md5_t
@ -81,7 +81,7 @@ struct upg_md5_t
struct upg_header_t
{
char sig[8];
char sig[NWZ_SIG_SIZE];
uint32_t nr_files;
uint32_t pad; // make sure structure size is a multiple of 8
} __attribute__((packed));
@ -92,6 +92,72 @@ struct upg_entry_t
uint32_t size;
} __attribute__((packed));
/** KAS / Key / Signature
*
* Since this is all very confusing, we need some terminology and notations:
* - [X, Y, Z] is a sequence of bytes, for example:
* [8, 0x89, 42]
* is a sequence of three bytes.
* - "abcdef" is a string: it is a sequences of bytes where each byte happens to
* be the ASCII encoding of a letter. So for example:
* "abc" = [97, 98, 99]
* because 'a' has ASCII encoding 97 and so one
* - HexString(Seq) refers to the string where each byte of the original sequence
* is represented in hexadecimal by two ASCII characters. For example:
* HexString([8, 0x89, 42]) = "08892a"
* because 8 = 0x08 so it represented by "08" and 42 = 0x2a. Note that the length
* of HexString(Seq) is always exactly twice the length of Seq.
* - DES(Seq,Pass) is the result of encrypting Seq with Pass using the DES cipher.
* Seq must be a sequence of 8 bytes (known as a block) and Pass must be a
* sequence of 8 bytes. The result is also a 8-byte sequence.
* - ECB_DES([Block0, Block1, ..., BlockN], Pass)
* = [DES(Block0,Pass), DES(Block1,Pass), ..., DES(BlockN,Pass)]
* where Blocki is a block (8 byte).
*
*
* A firmware upgrade file is always encrypted using a Key. To authenticate it,
* the upgrade file (before encryption) contains a Sig(nature). The pair (Key,Sig)
* is refered to as KeySig and is specific to each series. For example all
* NWZ-E46x use the same KeySig but the NWZ-E46x and NWZ-A86x use different KeySig.
* In the details, a Key is a sequence of 8 bytes and a Sig is also a sequence
* of 8 bytes. A KeySig is a simply the concatenation of the Key followed by
* the Sig, so it is a sequence of 16 bytes. Probably in an attempt to obfuscate
* things a little further, Sony never provides the KeySig directly but instead
* encrypts it using DES in ECB mode using a hardcoded password and provides
* the hexadecimal string of the result, known as the KAS, which is thus a string
* of 32 ASCII characters.
* Note that since DES works on blocks of 8 bytes and ECB encrypts blocks
* independently, it is the same to encrypt the KeySig as once or encrypt the Key
* and Sig separately.
*
* To summarize:
* Key = [K0, K1, K2, ..., K7] (8 bytes) (model specific)
* Sig = [S0, S1, S2, ..., S7] (8 bytes) (model specific)
* KeySig = [Key, Sig] = [K0, ... K7, S0, ..., S7] (16 bytes)
* FwpPass = "ed295076" (8 bytes) (never changes)
* EncKeySig = ECB_DES(KeySig, FwpPass) = [DES(Key, FwpPass), DES(Sig, FwpPass)]
* KAS = HexString(EncKeySig) (32 characters)
*
* In theory, the Key and Sig can be any 8-byte sequence. In practice, they always
* are strings, probably to make it easier to write them down. In many cases, the
* Key and Sig are even the hexadecimal string of 4-byte sequences but it is
* unclear if this is the result of pure luck, confused engineers, lazyness on
* Sony's part or by design. The following code assumes that Key and Sig are
* strings (though it could easily be fixed to work with anything if this is
* really needed).
*
*
* Here is a real example, from the NWZ-E46x Series:
* Key = "6173819e" (note that this is a string and even a hex string in this case)
* Sig = "30b82e5c"
* KeySig = [Key, Sig] = "6173819e30b82e5c"
* FwpPass = "ed295076" (never changes)
* EncKeySig = ECB_DES(KeySig, FwpPass)
* = [0x8a, 0x01, 0xb6, ..., 0xc5] (16 bytes)
* KAS = HexString(EncKeySig) = "8a01b624bfbfde4a1662a1772220e3c5"
*
*/
struct nwz_model_t g_model_list[] =
{
{ "nwz-e45x", HAS_KAS | HAS_KEY | HAS_SIG | CONFIRMED, "8a01b624bfbfde4a1662a1772220e3c5", "6173819e", "30b82e5c"},
@ -99,7 +165,7 @@ struct nwz_model_t g_model_list[] =
{ "nwz-a86x", HAS_KAS | HAS_KEY | HAS_SIG | CONFIRMED, "a7c4af6c28b8900a783f307c1ba538c5", "c824e4e2", "7c262bb0" },
/* The following keys were obtained by brute forcing firmware upgrades,
* someone with a device needs to confirm that they work */
{ "nw-a82x", HAS_KEY | HAS_SIG, {""}, "4df06482", "07fa0b6e" },
{ "nw-a82x", HAS_KEY | HAS_SIG, "", "4df06482", "07fa0b6e" },
};
static int digit_value(char c)
@ -115,15 +181,14 @@ static char hex_digit(unsigned v)
return (v < 10) ? v + '0' : (v < 16) ? v - 10 + 'a' : 'x';
}
static int decrypt_keysig(char keysig[NWZ_KEYSIG_SIZE])
static int decrypt_keysig(const char kas[NWZ_KAS_SIZE], char key[NWZ_KEY_SIZE],
char sig[NWZ_SIG_SIZE])
{
uint8_t src[16];
for(int i = 32; i < NWZ_KEYSIG_SIZE; i++)
keysig[i] = 0;
for(int index = 0; index < 16; index++)
uint8_t src[NWZ_KAS_SIZE / 2];
for(int index = 0; index < NWZ_KAS_SIZE / 2; index++)
{
int a = digit_value(keysig[index * 2]);
int b = digit_value(keysig[index * 2 + 1]);
int a = digit_value(kas[index * 2]);
int b = digit_value(kas[index * 2 + 1]);
if(a < 0 || b < 0)
{
cprintf(GREY, "Invalid KAS !\n");
@ -133,18 +198,137 @@ static int decrypt_keysig(char keysig[NWZ_KEYSIG_SIZE])
}
fwp_setkey("ed295076");
fwp_crypt(src, sizeof(src), 1);
memcpy(keysig + 33, src, 8);
memcpy(keysig + 42, src + 8, 8);
memcpy(key, src, NWZ_KEY_SIZE);
memcpy(sig, src + NWZ_KEY_SIZE, NWZ_SIG_SIZE);
return 0;
}
static bool upg_notify_keysig(void *user, uint8_t key[8], uint8_t sig[8])
static void encrypt_keysig(char kas[NWZ_KEY_SIZE],
const char key[NWZ_SIG_SIZE], const char sig[NWZ_KAS_SIZE])
{
memcpy(user + 33, key, 8);
memcpy(user + 42, sig, 8);
uint8_t src[NWZ_KAS_SIZE / 2];
fwp_setkey("ed295076");
memcpy(src, key, NWZ_KEY_SIZE);
memcpy(src + NWZ_KEY_SIZE, sig, NWZ_SIG_SIZE);
fwp_crypt(src, sizeof(src), 0);
for(int i = 0; i < NWZ_KAS_SIZE / 2; i++)
{
kas[2 * i] = hex_digit((src[i] >> 4) & 0xf);
kas[2 * i + 1] = hex_digit(src[i] & 0xf);
}
}
/* user needs to be pointer to a NWZ_KEYSIG_SIZE-byte buffer, on success g_key
* and g_sig are updated to point to the key and sig in the buffer */
static bool upg_notify_keysig(void *user, uint8_t key[NWZ_KEY_SIZE],
uint8_t sig[NWZ_SIG_SIZE])
{
g_key = user;
g_sig = user + NWZ_KEY_SIZE;
memcpy(g_key, key, NWZ_KEY_SIZE);
memcpy(g_sig, sig, NWZ_SIG_SIZE);
return true;
}
static int get_key_and_sig(bool is_extract, void *encrypted_hdr)
{
static char keysig[NWZ_KEYSIG_SIZE];
static char kas[NWZ_KAS_SIZE];
/* database lookup */
if(g_model_index != -1)
{
if(g_model_list[g_model_index].flags & HAS_KAS)
g_kas = g_model_list[g_model_index].kas;
if(g_model_list[g_model_index].flags & HAS_KEY)
g_key = g_model_list[g_model_index].key;
if(g_model_list[g_model_index].flags & HAS_SIG)
g_sig = g_model_list[g_model_index].sig;
}
/* always prefer KAS because it contains everything */
if(g_kas)
{
if(strlen(g_kas) != NWZ_KAS_SIZE)
{
cprintf(GREY, "The KAS has wrong length (must be %d hex digits)\n", NWZ_KAS_SIZE);
return 4;
}
g_key = keysig;
g_sig = keysig + NWZ_KEY_SIZE;
decrypt_keysig(g_kas, g_key, g_sig);
}
/* fall back to key and signature otherwise. The signature is not required
* when extracting but prevents from checking decryption */
else if(g_key && (is_extract || g_sig))
{
if(strlen(g_key) != 8)
{
cprintf(GREY, "The specified key has wrong length (must be 8 hex digits)\n");
return 4;
}
/* if there is a signature, it must have the correct size */
if(g_sig)
{
if(strlen(g_sig) != 8)
{
cprintf(GREY, "The specified sig has wrong length (must be 8 hex digits)\n");
return 5;
}
}
else
{
cprintf(GREY, "Warning: you have specified a key but no sig, I won't be able to do any checks\n");
}
}
/* for extraction, we offer a brute force search method from the MD5 */
else if(is_extract && g_keysig_search != KEYSIG_SEARCH_NONE)
{
cprintf(BLUE, "keysig Search\n");
cprintf_field(" Method: ", "%s\n", keysig_search_desc[g_keysig_search].name);
bool ok = keysig_search_desc[g_keysig_search].fn(encrypted_hdr, &upg_notify_keysig, keysig);
cprintf(GREEN, " Result: ");
cprintf(ok ? YELLOW : RED, "%s\n", ok ? "Key found" : "No key found");
if(!ok)
return 2;
}
else
{
cprintf(GREY, "A KAS or a keysig is needed to decrypt the firmware\n");
cprintf(GREY, "You have the following options(see help for more details):\n");
cprintf(GREY, "- select a model with a known KAS\n");
cprintf(GREY, "- specify an explicit KAS or key+sig\n");
if(is_extract)
cprintf(GREY, "- let me try to find the keysig(slow !)\n");
return 1;
}
/* If we only have the key and signature, we can create a "fake" KAS
* that decrypts to the same key and signature. Since it is not unique,
* it will generally not match the "official" one from Sony but will produce
* valid files anyway */
if(!g_kas)
{
if(!g_sig)
{
/* if we extract and don't have a signature, just use a random
* one, we cannot check it anyway */
g_sig = keysig;
memset(g_sig, '?', NWZ_SIG_SIZE);
}
g_kas = kas;
encrypt_keysig(g_kas, g_key, g_sig);
}
cprintf(BLUE, "Keys\n");
cprintf_field(" KAS: ", "%."STR(NWZ_KAS_SIZE)"s\n", g_kas);
cprintf_field(" Key: ", "%."STR(NWZ_KEY_SIZE)"s\n", g_key);
if(g_sig)
cprintf_field(" Sig: ", "%."STR(NWZ_SIG_SIZE)"s\n", g_sig);
return 0;
}
static int do_upg(void *buf, long size)
{
struct upg_md5_t *md5 = buf;
@ -163,136 +347,12 @@ static int do_upg(void *buf, long size)
}
check_field(memcmp(actual_md5, md5->md5, 16), 0, "Ok\n", "Mismatch\n");
if(g_model_index == -1 && g_keysig_search == KEYSIG_SEARCH_NONE && g_key == NULL && g_kas == NULL)
{
cprintf(GREY, "A KAS or a keysig is needed to decrypt the firmware\n");
cprintf(GREY, "You have the following options(see help for more details):\n");
cprintf(GREY, "- select a model with a known KAS\n");
cprintf(GREY, "- specify an explicit KAS or key(+optional sig)\n");
cprintf(GREY, "- let me try to find the keysig(slow !)\n");
return 1;
}
char kas[NWZ_KAS_SIZE];
char keysig[NWZ_KEYSIG_SIZE];
memset(kas, '?', NWZ_KAS_SIZE);
memset(keysig, '?', NWZ_KEYSIG_SIZE);
keysig[32] = keysig[41] = keysig[50] = 0;
if(g_kas)
{
if(strlen(g_kas) != NWZ_KAS_SIZE)
{
cprintf(GREY, "The specified KAS has wrong length (must be %d hex digits)\n", NWZ_KAS_SIZE);
return 4;
}
memcpy(keysig, g_kas, NWZ_KAS_SIZE);
decrypt_keysig(keysig);
g_kas = keysig;
g_key = keysig + 33;
g_sig = keysig + 42;
}
else if(g_key)
{
if(strlen(g_key) != 8)
{
cprintf(GREY, "The specified key has wrong length (must be 8 hex digits)\n");
return 4;
}
if(g_sig && strlen(g_sig) != 8)
{
cprintf(GREY, "The specified sig has wrong length (must be 8 hex digits)\n");
return 5;
}
memcpy(keysig + 33, g_key, 8);
if(!g_sig)
cprintf(GREY, "Warning: you have specified a key but no sig, I won't be able to do any checks\n");
else
memcpy(keysig + 42, g_sig, 8);
g_key = keysig + 33;
if(g_sig)
g_sig = keysig + 42;
}
else if(g_model_index == -1)
{
cprintf(BLUE, "keysig Search\n");
cprintf_field(" Method: ", "%s\n", keysig_search_desc[g_keysig_search].name);
bool ok = keysig_search_desc[g_keysig_search].fn((void *)(md5 + 1), &upg_notify_keysig, keysig);
cprintf(GREEN, " Result: ");
cprintf(ok ? YELLOW : RED, "%s\n", ok ? "Key found" : "No key found");
if(!ok)
return 2;
g_key = keysig + 33;
g_sig = keysig + 42;
}
else
{
if(g_model_list[g_model_index].flags & HAS_KAS)
g_kas = g_model_list[g_model_index].kas;
if(g_model_list[g_model_index].flags & HAS_KEY)
g_key = g_model_list[g_model_index].key;
if(g_model_list[g_model_index].flags & HAS_SIG)
g_sig = g_model_list[g_model_index].sig;
if(g_kas)
{
memcpy(keysig, g_kas, NWZ_KAS_SIZE);
decrypt_keysig(keysig);
g_kas = keysig;
g_key = keysig + 33;
g_sig = keysig + 42;
}
else
{
if(g_key)
{
memcpy(keysig + 33, g_key, 8);
g_key = keysig + 33;
}
if(g_sig)
{
memcpy(keysig + 42, g_sig, 8);
g_sig = keysig + 42;
}
}
}
if(!g_kas)
{
g_kas = keysig;
fwp_setkey("ed295076");
if(g_key)
{
memcpy(kas, g_key, 8);
fwp_crypt(kas, 8, 0);
for(int i = 0; i < 8; i++)
{
g_kas[2 * i] = hex_digit((kas[i] >> 4) & 0xf);
g_kas[2 * i + 1] = hex_digit(kas[i] & 0xf);
}
}
if(g_sig)
{
memcpy(kas + 8, g_sig, 8);
fwp_crypt(kas + 8, 8, 0);
for(int i = 8; i < 16; i++)
{
g_kas[2 * i] = hex_digit((kas[i] >> 4) & 0xf);
g_kas[2 * i + 1] = hex_digit(kas[i] & 0xf);
}
}
}
cprintf(BLUE, "Keys\n");
cprintf_field(" KAS: ", "%."STR(NWZ_KAS_SIZE)"s\n", g_kas);
cprintf_field(" Key: ", "%s\n", g_key);
if(g_sig)
cprintf_field(" Sig: ", "%s\n", g_sig);
int ret = get_key_and_sig(true, md5 + 1);
if(ret != 0)
return ret;
struct upg_header_t *hdr = (void *)(md5 + 1);
int ret = fwp_read(hdr, sizeof(struct upg_header_t), hdr, (void *)g_key);
ret = fwp_read(hdr, sizeof(struct upg_header_t), hdr, (void *)g_key);
if(ret)
return ret;
@ -336,7 +396,6 @@ static int do_upg(void *buf, long size)
return ret;
// but write the *good* amount of data
fwrite(buf + entry->offset, 1, entry->size, f);
fclose(f);
}
else
@ -414,118 +473,10 @@ static int create_upg(int argc, char **argv)
printf("You must specify a firmware filename\n");
usage();
}
if(g_model_index == -1 && (g_key == NULL || g_sig == NULL) && g_kas == NULL)
{
cprintf(GREY, "A KAS or a keysig is needed to encrypt the firmware\n");
cprintf(GREY, "You have the following options(see help for more details):\n");
cprintf(GREY, "- select a model with a known KAS\n");
cprintf(GREY, "- specify an explicit KAS or key+sig\n");
return 1;
}
char kas[NWZ_KAS_SIZE];
char keysig[NWZ_KEYSIG_SIZE];
memset(kas, '?', NWZ_KAS_SIZE);
memset(keysig, '?', NWZ_KEYSIG_SIZE);
keysig[32] = keysig[41] = keysig[50] = 0;
if(g_kas)
{
if(strlen(g_kas) != NWZ_KAS_SIZE)
{
cprintf(GREY, "The specified KAS has wrong length (must be %d hex digits)\n", NWZ_KAS_SIZE);
return 4;
}
memcpy(keysig, g_kas, NWZ_KAS_SIZE);
decrypt_keysig(keysig);
g_kas = keysig;
g_key = keysig + 33;
g_sig = keysig + 42;
}
else if(g_key)
{
if(strlen(g_key) != 8)
{
cprintf(GREY, "The specified key has wrong length (must be 8 hex digits)\n");
return 4;
}
if(strlen(g_sig) != 8)
{
cprintf(GREY, "The specified sig has wrong length (must be 8 hex digits)\n");
return 5;
}
memcpy(keysig + 33, g_key, 8);
if(!g_sig)
cprintf(GREY, "Warning: you have specified a key but no sig, I won't be able to do any checks\n");
else
memcpy(keysig + 42, g_sig, 8);
g_key = keysig + 33;
g_sig = keysig + 42;
}
else if(g_model_index != -1)
{
if(g_model_list[g_model_index].flags & HAS_KAS)
g_kas = g_model_list[g_model_index].kas;
if(g_model_list[g_model_index].flags & HAS_KEY)
g_key = g_model_list[g_model_index].key;
if(g_model_list[g_model_index].flags & HAS_SIG)
g_sig = g_model_list[g_model_index].sig;
if(g_key && g_sig)
{
memcpy(keysig + 33, g_key, 8);
g_key = keysig + 33;
memcpy(keysig + 42, g_sig, 8);
g_sig = keysig + 42;
}
else if(g_kas)
{
memcpy(keysig, g_kas, NWZ_KAS_SIZE);
decrypt_keysig(keysig);
g_kas = keysig;
g_key = keysig + 33;
g_sig = keysig + 42;
}
else
{
printf("Target doesn't have enough information to get key and sig\n");
return 1;
}
}
else
{
printf("Kill me\n");
return 1;
}
if(!g_kas)
{
g_kas = keysig;
fwp_setkey("ed295076");
memcpy(kas, g_key, 8);
fwp_crypt(kas, 8, 0);
for(int i = 0; i < 8; i++)
{
g_kas[2 * i] = hex_digit((kas[i] >> 4) & 0xf);
g_kas[2 * i + 1] = hex_digit(kas[i] & 0xf);
}
memcpy(kas + 8, g_sig, 8);
fwp_crypt(kas + 8, 8, 0);
for(int i = 8; i < 16; i++)
{
g_kas[2 * i] = hex_digit((kas[i] >> 4) & 0xf);
g_kas[2 * i + 1] = hex_digit(kas[i] & 0xf);
}
}
cprintf(BLUE, "Keys\n");
cprintf_field(" KAS: ", "%."STR(NWZ_KAS_SIZE)"s\n", g_kas);
cprintf_field(" Key: ", "%s\n", g_key);
if(g_sig)
cprintf_field(" Sig: ", "%s\n", g_sig);
int ret = get_key_and_sig(false, NULL);
if(ret != 0)
return ret;
FILE *fout = fopen(argv[0], "wb");
if(fout == NULL)
@ -558,8 +509,8 @@ static int create_upg(int argc, char **argv)
memcpy(hdr.sig, g_sig, 8);
hdr.nr_files = nr_files;
hdr.pad = 0;
int ret = fwp_write(&hdr, sizeof(hdr), &hdr, (void *)g_key);
ret = fwp_write(&hdr, sizeof(hdr), &hdr, (void *)g_key);
if(ret)
return ret;
MD5_Update(&c, &hdr, sizeof(hdr));
@ -573,7 +524,7 @@ static int create_upg(int argc, char **argv)
entry.offset = offset;
entry.size = filesize(files[i]);
offset += ROUND_UP(entry.size, 8); // do it before encryption !!
ret = fwp_write(&entry, sizeof(entry), &entry, (void *)g_key);
if(ret)
return ret;