1
0
Fork 0
forked from len0rd/rockbox

Fundamentally rewrite much of the audio DSP.

Creates a standard buffer passing, local data passing and messaging
system for processing stages. Stages can be moved to their own source
files to reduce clutter and ease assimilation of new ones. dsp.c
becomes dsp_core.c which supports an engine and framework for effects.

Formats and change notifications are passed along with the buffer so
that they arrive at the correct time at each stage in the chain
regardless of the internal delays of a particular one.

Removes restrictions on the number of samples that can be processed at
a time and it pays attention to destination buffer size restrictions
without having to limit input count, which also allows pcmbuf to
remain fuller and safely set its own buffer limits as it sees fit.
There is no longer a need to query input/output counts given a certain
number of input samples; just give it the sizes of the source and
destination buffers.

Works in harmony with stages that are not deterministic in terms of
sample input/output ratio (like both resamplers but most notably
the timestretch). As a result it fixes quirks with timestretch hanging
up with certain settings and it now operates properly throughout its
full settings range.
Change-Id: Ib206ec78f6f6c79259c5af9009fe021d68be9734
Reviewed-on: http://gerrit.rockbox.org/200
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested-by: Michael Sevakis <jethead71@rockbox.org>
This commit is contained in:
Michael Sevakis 2012-03-27 19:52:15 -04:00
parent c9c1349773
commit c9bcbe202d
56 changed files with 4823 additions and 2998 deletions

View file

@ -19,23 +19,27 @@
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
/****************************************************************************
* void dsp_apply_gain(int count, struct dsp_data *data, int32_t *buf[])
* void pga_process(struct dsp_proc_entry *this, struct dsp_buffer **buf_p)
*/
.section .text
.align 2
.global dsp_apply_gain
dsp_apply_gain:
.global pga_process
pga_process:
| input: 4(sp) = this, 8(sp) = buf_p
movem.l 4(%sp), %a0-%a1 | %a0 = this, %a1 = buf_p
move.l (%a0), %a0 | %a0 = this->data = &pga_data
move.l (%a0), %a0 | %a0 = data->gain
move.l (%a1), %a1 | %a1 = buf = *buf_p
lea.l -20(%sp), %sp | save registers
movem.l %d2-%d4/%a2-%a3, (%sp) |
movem.l 28(%sp), %a0-%a1 | %a0 = data,
| %a1 = buf
move.l 4(%a0), %d1 | %d1 = data->num_channels
move.l 32(%a0), %a0 | %a0 = data->gain (in s8.23)
clr.l %d1 | %d1 = buf->format.num_channels
move.b 17(%a1), %d1 |
10: | channel loop |
move.l 24(%sp), %d0 | %d0 = count
move.l -4(%a1, %d1.l*4), %a2 | %a2 = s = buf[ch-1]
move.l (%a1), %d0 | %d0 = buf->remcount
move.l (%a1, %d1.l*4), %a2 | %a2 = s = buf->p32[ch-1]
move.l %a2, %a3 | %a3 = d = s
move.l (%a2)+, %d2 | %d2 = *s++,
mac.l %a0, %d2, (%a2)+, %d2, %acc0 | %acc0 = S(n)*gain, load S(n+1)
@ -61,25 +65,29 @@ dsp_apply_gain:
movem.l (%sp), %d2-%d4/%a2-%a3 | restore registers
lea.l 20(%sp), %sp | cleanup stack
rts |
.size dsp_apply_gain,.-dsp_apply_gain
.size pga_process, .-pga_process
/****************************************************************************
* void apply_crossfeed(int count, int32_t *buf[])
* void crossfeed_process(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text
.align 2
.global apply_crossfeed
apply_crossfeed:
.global crossfeed_process
crossfeed_process:
| input: 4(sp) = this, 8(sp) = buf_p
lea.l -44(%sp), %sp |
movem.l %d2-%d7/%a2-%a6, (%sp) | save all regs
movem.l 48(%sp), %d7/%a4 | %d7 = count, %a4 = src
movem.l (%a4), %a4-%a5 | %a4 = src[0], %a5 = src[1]
lea.l crossfeed_data, %a1 | %a1 = &crossfeed_data
movem.l 48(%sp), %a1/%a4 | %a1 = this, %a4 = buf_p
move.l (%a4), %a4 | %a4 = buf = *buf_p
movem.l (%a4), %d7/%a4-%a5 | %d7 = buf->remcount, %a4 = buf->p32[0],
| %a5 = buf->p32[1]
move.l (%a1), %a1 | %a1 = &crossfeed_state
move.l (%a1)+, %d6 | %d6 = direct gain
movem.l 12(%a1), %d0-%d3 | fetch filter history samples
move.l 132(%a1), %a0 | fetch delay line address
lea.l 132(%a1), %a6 | %a6 = delay line wrap limit
move.l (%a6), %a0 | fetch delay line address
movem.l (%a1), %a1-%a3 | load filter coefs
lea.l crossfeed_data+136, %a6 | %a6 = delay line wrap limit
bra.b 20f | loop start | go to loop start point
/* Register usage in loop:
* %a0 = delay_p, %a1..%a3 = b0, b1, a1 (filter coefs),
@ -109,174 +117,181 @@ apply_crossfeed:
mac.l %d6, %d5, %acc1 | %acc1 += gain*x_r[n]
cmp.l %a6, %a0 | wrap %a0 if passed end
bhs.b 30f | wrap buffer |
.word 0x51fb | tpf.l | trap the buffer wrap
tpf.l | trap the buffer wrap
30: | wrap buffer | ...fwd taken branches more costly
lea.l -104(%a0), %a0 | wrap it up
lea.l -104(%a6), %a0 | wrap it up
subq.l #1, %d7 | --count > 0 ?
bgt.b 10b | loop | yes? do more
movclr.l %acc0, %d4 | write last outputs
move.l %d4, (%a4) | .
movclr.l %acc1, %d5 | .
move.l %d5, (%a5) | .
lea.l crossfeed_data+16, %a1 | save data back to struct
movem.l %d0-%d3, (%a1) | ...history
move.l %a0, 120(%a1) | ...delay_p
movem.l %d0-%d3, -120(%a6) | ...history
move.l %a0, (%a6) | ...delay_p
movem.l (%sp), %d2-%d7/%a2-%a6 | restore all regs
lea.l 44(%sp), %sp |
rts |
.size apply_crossfeed,.-apply_crossfeed
.size crossfeed_process,.-crossfeed_process
/****************************************************************************
* int dsp_downsample(int count, struct dsp_data *data,
* in32_t *src[], int32_t *dst[])
* int lin_resample_resample(struct resample_data *data,
* struct dsp_buffer *src,
* struct dsp_buffer *dst)
*/
.section .text
.align 2
.global dsp_downsample
dsp_downsample:
lea.l -40(%sp), %sp | save non-clobberables
movem.l %d2-%d7/%a2-%a5, (%sp) |
movem.l 44(%sp), %d2/%a0-%a2 | %d2 = count
| %a0 = data
.global lin_resample_resample
lin_resample_resample:
| input: 4(sp) = data, 8(sp) = src, 12(sp) = dst
lea.l -44(%sp), %sp | save non-volatiles
movem.l %d2-%d7/%a2-%a6, (%sp) |
movem.l 48(%sp), %a0-%a2 | %a0 = data
| %a1 = src
| %a2 = dst
movem.l 4(%a0), %d3-%d4 | %d3 = ch = data->num_channels
| %d4 = delta = data->resample_data.delta
clr.l %d1 | %d1 = ch = src->format.num_channels
move.b 17(%a1), %d1 |
moveq.l #16, %d7 | %d7 = shift
10: | channel loop |
move.l 12(%a0), %d5 | %d5 = phase = data->resample_data.phase
move.l -4(%a1, %d3.l*4), %a3 | %a3 = s = src[ch-1]
move.l -4(%a2, %d3.l*4), %a4 | %a4 = d = dst[ch-1]
lea.l 12(%a0, %d3.l*4), %a5 | %a5 = &data->resample_data.ast_sample[ch-1]
move.l (%a5), %d0 | %d0 = last = data->resample_data.last_sample[ch-1]
move.l -4(%a3, %d2.l*4), (%a5) | data->resample_data.last_sample[ch-1] = s[count-1]
move.l %d5, %d6 | %d6 = pos = phase >> 16
lsr.l %d7, %d6 |
cmp.l %d2, %d6 | past end of samples?
bge.b 40f | skip resample loop| yes? skip loop
tst.l %d6 | need last sample of prev. frame?
bne.b 20f | resample loop | no? start main loop
move.l (%a3, %d6.l*4), %d1 | %d1 = s[pos]
bra.b 30f | resample start last | start with last (last in %d0)
20: | resample loop |
lea.l -4(%a3, %d6.l*4), %a5 | load s[pos-1] and s[pos]
movem.l (%a5), %d0-%d1 |
30: | resample start last |
sub.l %d0, %d1 | %d1 = diff = s[pos] - s[pos-1]
move.l %d0, %acc0 | %acc0 = previous sample
move.l %d5, %d0 | frac = (phase << 16) >> 1
.lrs_channel_loop: |
movem.l (%a0), %d2-%d3 | %d2 = delta = data->delta,
| %d3 = phase = data->phase
move.l (%a1), %d4 | %d4 = srcrem = src->remcount
move.l 12(%a2), %d5 | %d5 = dstrem = dst->bufcount
cmp.l #0x8000, %d4 | %d4 = MIN(srcrem, 0x8000)
ble.b 10f |
move.l #0x8000, %d4 |
10: |
move.l (%a1, %d1.l*4), %a3 | %a3 = s = src->p32[ch]
move.l (%a2, %d1.l*4), %a4 | %a4 = d = dst->p32[ch]
move.l %d3, %d0 | %d0 = pos
lsr.l %d7, %d0 | ...
beq.b 11f | pos == 0?
cmp.l %d4, %d0 | pos = MIN(pos, srcrem)
blt.b 12f |
move.l %d4, %d0 | pos = srcrem
move.l -4(%a3, %d0.l*4), %d6 | %d6 = last = s[pos - 1]
bra.w .lrs_channel_complete | at limit; nothing to do but next
11: |
move.l 4(%a0, %d1.l*4), %d6 | %d6 = last = last_sample[ch]
tpf.l | trap next move.l (last = s[pos - 1])
12: |
move.l -4(%a3, %d0.l*4), %d6 | %d6 = last = s[pos - 1]
cmp.l #0x10000, %d2 | delta >= 1.0?
bhs.b .lrs_downsample | yes? downsampling
|
/** Upsampling **/ |
lea.l (%a3, %d0.l*4), %a3 | %a3 = &s[pos]
sub.l %d4, %d0 | %d0 = pos - srcrem = -dte
lsl.l %d7, %d2 | move delta to bits 30..15
lsr.l #1, %d2 |
lsl.l %d7, %d3 | move phase to bits 30..15
lsr.l #1, %d3 |
move.l (%a3)+, %a5 | %a5 = s[pos]
move.l %a5, %a6 | %a6 = diff = s[pos] - last
sub.l %d6, %a6 |
bra.b 22f |
/* Funky loop structure is to avoid emac latency stalls */
20: |
move.l (%a3)+, %a5 | %a5 = s[pos]
move.l %a5, %a6 | %a6 = diff = s[pos] - last
sub.l %d6, %a6 |
21: |
movclr.l %acc0, %d7 | *d++ = %d7 = result
move.l %d7, (%a4)+ |
22: |
move.l %d6, %acc0 | %acc0 = last
mac.l %d3, %a6, %acc0 | %acc0 += frac * diff
subq.l #1, %d5 | dstrem <= 0?
ble.b 23f | yes? stop
add.l %d2, %d3 | phase += delta
bpl.b 21b | load next values?
move.l %a5, %d6 |
bclr.l #31, %d3 | clear sign bit
addq.l #1, %d0 | dte > 0?
bmi.b 20b | yes? continue resampling
tpf.w | trap next add.l (phase += delta)
23: |
add.l %d2, %d3 | phase += delta
lsl.l #1, %d3 | frac -> phase
bcs.b 24f | was sign bit set?
tpf.l |
24: |
move.l %a5, %d6 | yes? was going to move to new s[pos]
addq.l #1, %d0 |
movclr.l %acc0, %d7 | *d = %d7 = result
move.l %d7, (%a4) |
add.l %d4, %d0 | %d0 = -dte + srcrem = pos
or.l %d0, %d3 | restore phase
swap.w %d3 |
moveq.l #16, %d7 | %d7 = shift
bra.b .lrs_channel_complete |
|
/** Downsampling **/ |
.lrs_downsample: |
move.l (%a3, %d0.l*4), %a5 | %a5 = s[pos]
bra.b 31f |
30: |
lea.l -4(%a3, %d0.l*4), %a5 | %d6 = s[pos - 1], %a5 = s[pos]
movem.l (%a5), %d6/%a5 |
31: |
move.l %d6, %acc0 | %acc0 = last
sub.l %d6, %a5 | %a5 = diff = s[pos] - s[pos - 1]
move.l %d3, %d0 | frac = (phase << 16) >> 1
lsl.l %d7, %d0 |
lsr.l #1, %d0 |
mac.l %d0, %d1, %acc0 | %acc0 += frac * diff
add.l %d4, %d5 | phase += delta
move.l %d5, %d6 | pos = phase >> 16
lsr.l %d7, %d6 |
movclr.l %acc0, %d0 |
move.l %d0, (%a4)+ | *d++ = %d0
cmp.l %d2, %d6 | pos < count?
blt.b 20b | resample loop | yes? continue resampling
40: | skip resample loop |
subq.l #1, %d3 | ch > 0?
bgt.b 10b | channel loop | yes? process next channel
lsl.l %d7, %d2 | wrap phase to start of next frame
sub.l %d2, %d5 | data->resample_data.phase =
move.l %d5, 12(%a0) | ... phase - (count << 16)
move.l %a4, %d0 | return d - d[0]
sub.l (%a2), %d0 |
asr.l #2, %d0 | convert bytes->samples
movem.l (%sp), %d2-%d7/%a2-%a5 | restore non-clobberables
lea.l 40(%sp), %sp | cleanup stack
mac.l %d0, %a5, %acc0 | %acc0 += frac * diff
add.l %d2, %d3 | phase += delta
move.l %d3, %d0 | pos = phase >> 16
lsr.l %d7, %d0 |
movclr.l %acc0, %a5 |
move.l %a5, (%a4)+ | *d++ = %d0
subq.l #1, %d5 | dst full?
ble.b 32f | yes? stop
cmp.l %d4, %d0 | pos < srcrem?
blt.b 30b | yes? continue resampling
tpf.l | trap cmp.l and ble.b
32: |
cmp.l %d4, %d0 | pos = MIN(pos, srcrem)
ble.b 33f |
move.l %d4, %d0 |
33: |
move.l -4(%a3, %d0.l*4), %d6 | %d6 = s[pos - 1]
|
.lrs_channel_complete: |
move.l %d6, 4(%a0, %d1.l*4) | last_sample[ch] = last
subq.l #1, %d1 | ch > 0?
bgt.w .lrs_channel_loop | yes? process next channel
|
move.l 12(%a2), %d1 | %d1 = dst->bufcount
sub.l %d5, %d1 | written = dst->bufcount - dstrem
move.l %d1, (%a2) | dst->remcount = written
move.l %d0, %d1 | wrap phase to position in next frame
lsl.l %d7, %d1 | data->phase = phase - (pos << 16)
sub.l %d1, %d3 | ...
move.l %d3, 4(%a0) | ...
movem.l (%sp), %d2-%d7/%a2-%a6 | restore non-volatiles
lea.l 44(%sp), %sp | cleanup stack
rts | buh-bye
.size dsp_downsample,.-dsp_downsample
.size lin_resample_resample, .-lin_resample_resample
/****************************************************************************
* int dsp_upsample(int count, struct dsp_data *dsp,
* const int32_t *src[], int32_t *dst[])
*/
.section .text
.align 2
.global dsp_upsample
dsp_upsample:
lea.l -40(%sp), %sp | save non-clobberables
movem.l %d2-%d7/%a2-%a5, (%sp) |
movem.l 44(%sp), %d2/%a0-%a2 | %d2 = count
| %a0 = data
| %a1 = src
| %a2 = dst
movem.l 4(%a0), %d3-%d4 | %d3 = ch = channels
| %d4 = delta = data->resample_data.delta
swap %d4 | swap delta to high word to use...
| ...carries to increment position
10: | channel loop |
move.l 12(%a0), %d5 | %d5 = phase = data->resample_data.phase
move.l -4(%a1, %d3.l*4), %a3 | %a3 = s = src[ch-1]
lea.l 12(%a0, %d3.l*4), %a4 | %a4 = &data->resample_data.last_sample[ch-1]
lea.l -4(%a3, %d2.l*4), %a5 | %a5 = src_end = &src[count-1]
move.l (%a4), %d0 | %d0 = last = data->resample_data.last_sample[ch-1]
move.l (%a5), (%a4) | data->resample_data.last_sample[ch-1] = s[count-1]
move.l -4(%a2, %d3.l*4), %a4 | %a4 = d = dst[ch-1]
move.l (%a3)+, %d1 | fetch first sample - might throw this...
| ...away later but we'll be preincremented
move.l %d1, %d6 | save sample value
sub.l %d0, %d1 | %d1 = diff = s[0] - last
swap %d5 | swap phase to high word to use
| carries to increment position
move.l %d5, %d7 | %d7 = pos = phase >> 16
clr.w %d5 |
eor.l %d5, %d7 | pos == 0?
beq.b 40f | loop start | yes? start loop
cmp.l %d2, %d7 | past end of samples?
bge.b 50f | skip resample loop| yes? go to next channel and collect info
lea.l (%a3, %d7.l*4), %a3 | %a3 = s = &s[pos+1]
movem.l -8(%a3), %d0-%d1 | %d0 = s[pos-1], %d1 = s[pos]
move.l %d1, %d6 | save sample value
sub.l %d0, %d1 | %d1 = diff = s[pos] - s[pos-1]
bra.b 40f | loop start |
20: | next sample loop |
move.l %d6, %d0 | move previous sample to %d0
move.l (%a3)+, %d1 | fetch next sample
move.l %d1, %d6 | save sample value
sub.l %d0, %d1 | %d1 = diff = s[pos] - s[pos-1]
30: | same sample loop |
movclr.l %acc0, %d7 | %d7 = result
move.l %d7, (%a4)+ | *d++ = %d7
40: | loop start |
lsr.l #1, %d5 | make phase into frac
move.l %d0, %acc0 | %acc0 = s[pos-1]
mac.l %d1, %d5, %acc0 | %acc0 = diff * frac
lsl.l #1, %d5 | restore frac to phase
add.l %d4, %d5 | phase += delta
bcc.b 30b | same sample loop | load next values?
cmp.l %a5, %a3 | src <= src_end?
bls.b 20b | next sample loop | yes? continue resampling
movclr.l %acc0, %d7 | %d7 = result
move.l %d7, (%a4)+ | *d++ = %d7
50: | skip resample loop |
subq.l #1, %d3 | ch > 0?
bgt.b 10b | channel loop | yes? process next channel
swap %d5 | wrap phase to start of next frame
move.l %d5, 12(%a0) | ...and save in data->resample_data.phase
move.l %a4, %d0 | return d - d[0]
sub.l (%a2), %d0 |
movem.l (%sp), %d2-%d7/%a2-%a5 | restore non-clobberables
asr.l #2, %d0 | convert bytes->samples
lea.l 40(%sp), %sp | cleanup stack
rts | buh-bye
.size dsp_upsample,.-dsp_upsample
/****************************************************************************
* void channels_process_sound_chan_mono(int count, int32_t *buf[])
* void channel_mode_proc_mono(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*
* Mix left and right channels 50/50 into a center channel.
*/
.section .text
.align 2
.global channels_process_sound_chan_mono
channels_process_sound_chan_mono:
movem.l 4(%sp), %d0/%a0 | %d0 = count, %a0 = buf
.global channel_mode_proc_mono
channel_mode_proc_mono:
| input: 4(sp) = this, 8(sp) = buf_p
move.l 8(%sp), %a0 | %a0 = buf_p
move.l (%a0), %a0 | %a0 = buf = *buf_p
lea.l -20(%sp), %sp | save registers
movem.l %d2-%d4/%a2-%a3, (%sp) |
movem.l (%a0), %a0-%a1 | get channel pointers
movem.l (%a0), %d0/%a0-%a1 | %d0 = buf->remcount, %a0 = buf->p32[0],
| %a1 = buf->p32[1]
move.l %a0, %a2 | use separate dst pointers since read
move.l %a1, %a3 | pointers run one ahead of write
move.l #0x40000000, %d3 | %d3 = 0.5
@ -301,26 +316,29 @@ channels_process_sound_chan_mono:
movem.l (%sp), %d2-%d4/%a2-%a3 | restore registers
lea.l 20(%sp), %sp | cleanup
rts |
.size channels_process_sound_chan_mono, \
.-channels_process_sound_chan_mono
.size channel_mode_proc_mono, .-channel_mode_proc_mono
/****************************************************************************
* void channels_process_sound_chan_custom(int count, int32_t *buf[])
* void channel_mode_proc_custom(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*
* Apply stereo width (narrowing/expanding) effect.
*/
.section .text
.align 2
.global channels_process_sound_chan_custom
channels_process_sound_chan_custom:
movem.l 4(%sp), %d0/%a0 | %d0 = count, %a0 = buf
.global channel_mode_proc_custom
channel_mode_proc_custom:
| input: 4(sp) = this, 8(sp) = buf_p
lea.l -28(%sp), %sp | save registers
movem.l %d2-%d6/%a2-%a3, (%sp) |
movem.l (%a0), %a0-%a1 | get channel pointers
movem.l 32(%sp), %a0-%a1 | %a0 = this, %a1 = buf_p
move.l (%a1), %a1 | %a1 = buf = *buf_p
move.l (%a0), %a2 | %a2 = this->data = &channel_mode_data
movem.l (%a1), %d0/%a0-%a1 | %d0 = buf->remcount, %a0 = buf->p32[0],
| %a1 = buf->p32[1]
movem.l (%a2), %d3-%d4 | %d3 = sw_gain, %d4 = sw_cross
move.l %a0, %a2 | use separate dst pointers since read
move.l %a1, %a3 | pointers run one ahead of write
move.l dsp_sw_gain, %d3 | load straight (mid) gain
move.l dsp_sw_cross, %d4 | load cross (side) gain
move.l (%a0)+, %d1 | prime the input registers
move.l (%a1)+, %d2 |
mac.l %d1, %d3 , %acc0 | L = l*gain + r*cross
@ -348,22 +366,25 @@ channels_process_sound_chan_custom:
movem.l (%sp), %d2-%d6/%a2-%a3 | restore registers
lea.l 28(%sp), %sp | cleanup
rts |
.size channels_process_sound_chan_custom, \
.-channels_process_sound_chan_custom
.size channel_mode_proc_custom, .-channel_mode_proc_custom
/****************************************************************************
* void channels_process_sound_chan_karaoke(int count, int32_t *buf[])
* void channel_mode_proc_karaoke(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*
* Separate channels into side channels.
*/
.section .text
.align 2
.global channels_process_sound_chan_karaoke
channels_process_sound_chan_karaoke:
movem.l 4(%sp), %d0/%a0 | %d0 = count, %a0 = buf
.global channel_mode_proc_karaoke
channel_mode_proc_karaoke:
| input: 4(sp) = this, 8(sp) = buf_p
move.l 8(%sp), %a0 | %a0 = buf_p
move.l (%a0), %a0 | %a0 = buf = *buf_p
lea.l -20(%sp), %sp | save registers
movem.l %d2-%d4/%a2-%a3, (%sp) |
movem.l (%a0), %a0-%a1 | get channel src pointers
movem.l (%a0), %d0/%a0-%a1 | %d0 = buf->remcount, %a0 = buf->p32[0],
| %a1 = buf->p32[1]
move.l %a0, %a2 | use separate dst pointers since read
move.l %a1, %a3 | pointers run one ahead of write
move.l #0x40000000, %d3 | %d3 = 0.5
@ -390,12 +411,90 @@ channels_process_sound_chan_karaoke:
movem.l (%sp), %d2-%d4/%a2-%a3 | restore registers
lea.l 20(%sp), %sp | cleanup
rts |
.size channels_process_sound_chan_karaoke, \
.-channels_process_sound_chan_karaoke
.size channel_mode_proc_karaoke, .-channel_mode_proc_karaoke
/****************************************************************************
* void sample_output_stereo(int count, struct dsp_data *data,
* const int32_t *src[], int16_t *dst)
* void filter_process(struct dsp_filter *f, int32_t *buf[], int count,
* unsigned int channels)
*
* define HIGH_PRECISION as '1' to make filtering calculate lower bits after
* shifting. without this, "shift" - 1 of the lower bits will be lost here.
*/
#define HIGH_PRECISION 0
.text
.global filter_process
filter_process:
| input: 4(sp) = f, 8(sp) = buf, 12(sp) = count, 16(sp) = channels
lea.l -44(%sp), %sp | save clobbered regs
#if HIGH_PRECISION
movem.l %d2-%d7/%a2-%a6, (%sp) | .
#else
movem.l %d2-%d6/%a2-%a6, (%sp) |
#endif
move.l 48(%sp), %a5 | fetch filter structure address
clr.l %d6 | load shift count
move.b 52(%a5), %d6 | .
subq.l #1, %d6 | EMAC gives us one free shift
#if HIGH_PRECISION
moveq.l #8, %d7
sub.l %d6, %d7 | shift for lower part of accumulator
#endif
movem.l (%a5), %a0-%a4 | load coefs
lea.l 20(%a5), %a5 | point to filter history
10: | channel loop
move.l 52(%sp), %a6 | load input channel pointer
addq.l #4, 52(%sp) | point x to next channel
move.l (%a6), %a6 |
move.l 56(%sp), %d5 | number of samples
movem.l (%a5), %d0-%d3 | load filter history
| d0-d3 = history, d4 = temp, d5 = sample count, d6 = upper shift amount,
| d7 = lower shift amount,a0-a4 = coefs, a5 = history pointer, a6 = buf[ch]
20: | loop
| Direct form 1 filtering code. We assume DSP has put EMAC in frac mode.
| y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2],
| where y[] is output and x[] is input. This is performed out of order
| to do parallel load of input value.
mac.l %a2, %d1, %acc0 | acc = b2*x[i - 2]
move.l %d0, %d1 | fix input history
mac.l %a1, %d0, (%a6), %d0, %acc0 | acc += b1*x[i - 1], x[i] -> d0
mac.l %a0, %d0, %acc0 | acc += b0*x[i]
mac.l %a3, %d2, %acc0 | acc += a1*y[i - 1]
mac.l %a4, %d3, %acc0 | acc += a2*y[i - 2]
move.l %d2, %d3 | fix output history
#if HIGH_PRECISION
move.l %accext01, %d2 | fetch lower part of accumulator
move.b %d2, %d4 | clear upper three bytes
lsr.l %d7, %d4 | shift lower bits
#endif
movclr.l %acc0, %d2 | fetch upper part of result
asl.l %d6, %d2 | restore fixed point format
#if HIGH_PRECISION
or.l %d2, %d4 | combine lower and upper parts
#endif
move.l %d2, (%a6)+ | save result
subq.l #1, %d5 | are we done with this channel?
bgt 20b | loop
movem.l %d0-%d3, (%a5) | save history back to struct
lea.l 16(%a5), %a5 | point to next channel's history
subq.l #1, 60(%sp) | have we processed both channels?
bhi 10b | channel loop
#if HIGH_PRECISION
movem.l (%sp), %d2-%d7/%a2-%a6
#else
movem.l (%sp), %d2-%d6/%a2-%a6
#endif
lea.l 44(%sp), %sp
rts
.size filter_process, .-filter_process
/****************************************************************************
* void sample_output_stereo(struct sample_io_data *this,
* struct dsp_buffer *src,
* struct dsp_buffer *dst)
*
* Framework based on the ubiquitous Rockbox line transfer logic for
* Coldfire CPUs.
@ -417,20 +516,24 @@ channels_process_sound_chan_karaoke:
.align 2
.global sample_output_stereo
sample_output_stereo:
| input: 4(sp) = count, 8(sp) = src, 12(sp) = dst
lea.l -48(%sp), %sp | save registers
move.l %macsr, %d1 | do it now as at many lines will
movem.l %d1-%d7/%a2-%a6, (%sp) | be the far more common condition
move.l #0x80, %macsr | put emac unit in signed int mode
movem.l 52(%sp), %a0-%a2/%a4 |
lea.l (%a4, %a0.l*4), %a0 | %a0 = end address
move.l (%a1), %d1 | %a1 = multiplier: (1 << (16 - scale))
movem.l 52(%sp), %a0-%a2 | %a0 = this, %a1 = src, %a2 = dst
move.l (%a0), %a0 | %a0 = this->outcount
move.l 4(%a2), %a4 | %a4 = dst->p16out
lea.l (%a4, %a0.l*4), %a0 | %a0 = count -> end address
movem.l 4(%a1), %a2-%a3 | %a2 = src->p32[0], %a3 = src->p32[1]
clr.l %d1 | %a1 = multiplier: (1 << (16 - scale))
move.b 19(%a1), %d1 | %d1 = src->format.output_scale
sub.l #16, %d1 |
neg.l %d1 |
moveq.l #1, %d0 |
asl.l %d1, %d0 |
move.l %d0, %a1 |
move.l #0x8000, %a6 | %a6 = rounding term
movem.l (%a2), %a2-%a3 | get L/R channel pointers
moveq.l #28, %d0 | %d0 = second line bound
add.l %a4, %d0 |
and.l #0xfffffff0, %d0 |
@ -447,7 +550,7 @@ sample_output_stereo:
mac.l %d2, %a1, %acc1 | shift R to high word
movclr.l %acc0, %d1 | get possibly saturated results
movclr.l %acc1, %d2 |
swap %d2 | move R to low word
swap.w %d2 | move R to low word
move.w %d2, %d1 | interleave MS 16 bits of each
move.l %d1, (%a4)+ | ...and write both
cmp.l %a4, %d0 |
@ -477,10 +580,10 @@ sample_output_stereo:
mac.l %d1, %a1, (%a2)+, %d2, %acc1 | with saturation
mac.l %d2, %a1, (%a2)+, %d3, %acc2 |
mac.l %d3, %a1 , %acc3 |
swap %d4 | a) interleave most significant...
swap %d5 |
swap %d6 |
swap %d7 |
swap.w %d4 | a) interleave most significant...
swap.w %d5 |
swap.w %d6 |
swap.w %d7 |
movclr.l %acc0, %d0 | obtain L results
movclr.l %acc1, %d1 |
movclr.l %acc2, %d2 |
@ -503,7 +606,7 @@ sample_output_stereo:
mac.l %d2, %a1, %acc1 |
movclr.l %acc0, %d1 |
movclr.l %acc1, %d2 |
swap %d2 |
swap.w %d2 |
move.w %d2, %d1 |
move.l %d1, (%a4)+ |
cmp.l %a4, %a0 |
@ -516,8 +619,9 @@ sample_output_stereo:
.size sample_output_stereo, .-sample_output_stereo
/****************************************************************************
* void sample_output_mono(int count, struct dsp_data *data,
* const int32_t *src[], int16_t *dst)
* void sample_output_mono(struct sample_io_data *this,
* struct dsp_buffer *src,
* struct dsp_buffer *dst)
*
* Same treatment as sample_output_stereo but for one channel.
*/
@ -525,19 +629,23 @@ sample_output_stereo:
.align 2
.global sample_output_mono
sample_output_mono:
| input: 4(sp) = count, 8(sp) = src, 12(sp) = dst
lea.l -32(%sp), %sp | save registers
move.l %macsr, %d1 | do it now as at many lines will
movem.l %d1-%d5/%a2-%a4, (%sp) | be the far more common condition
move.l #0x80, %macsr | put emac unit in signed int mode
movem.l 36(%sp), %a0-%a3 |
lea.l (%a3, %a0.l*4), %a0 | %a0 = end address
move.l (%a1), %d1 | %d5 = multiplier: (1 << (16 - scale))
movem.l 36(%sp), %a0-%a2 | %a0 = this, %a1 = src, %a2 = dst
move.l (%a0), %a0 | %a0 = this->outcount
move.l 4(%a2), %a3 | %a3 = dst->p16out
movem.l 4(%a1), %a2 | %a2 = src->p32[0]
lea.l (%a3, %a0.l*4), %a0 | %a0 = count -> end address
clr.l %d1 | %d5 = multiplier: (1 << (16 - scale))
move.b 19(%a1), %d1 | %d1 = src->format.output_scale
sub.l #16, %d1 |
neg.l %d1 |
moveq.l #1, %d5 |
asl.l %d1, %d5 |
move.l #0x8000, %a4 | %a4 = rounding term
movem.l (%a2), %a2 | get source channel pointer
moveq.l #28, %d0 | %d0 = second line bound
add.l %a3, %d0 |
and.l #0xfffffff0, %d0 |
@ -552,7 +660,7 @@ sample_output_mono:
mac.l %d1, %d5, %acc0 | shift L to high word
movclr.l %acc0, %d1 | get possibly saturated results
move.l %d1, %d2 |
swap %d2 | move R to low word
swap.w %d2 | move R to low word
move.w %d2, %d1 | duplicate single channel into
move.l %d1, (%a3)+ | L and R
cmp.l %a3, %d0 |
@ -575,16 +683,16 @@ sample_output_mono:
movclr.l %acc2, %d2 |
movclr.l %acc3, %d3 |
move.l %d0, %d4 | duplicate single channel
swap %d4 | into L and R
swap.w %d4 | into L and R
move.w %d4, %d0 |
move.l %d1, %d4 |
swap %d4 |
swap.w %d4 |
move.w %d4, %d1 |
move.l %d2, %d4 |
swap %d4 |
swap.w %d4 |
move.w %d4, %d2 |
move.l %d3, %d4 |
swap %d4 |
swap.w %d4 |
move.w %d4, %d3 |
movem.l %d0-%d3, -16(%a3) | write four stereo samples
cmp.l %a3, %a1 |
@ -598,7 +706,7 @@ sample_output_mono:
mac.l %d1, %d5, %acc0 | the same way as leading ones
movclr.l %acc0, %d1 |
move.l %d1, %d2 |
swap %d2 |
swap.w %d2 |
move.w %d2, %d1 |
move.l %d1, (%a3)+ |
cmp.l %a3, %a0 |