1
0
Fork 0
forked from len0rd/rockbox

More unification of FIXED_POINT and FLOAT. Small refactoring.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@28084 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Andree Buschmann 2010-09-14 20:26:01 +00:00
parent 82c143c4e1
commit 9fb54ae32b
3 changed files with 54 additions and 78 deletions

View file

@ -288,6 +288,7 @@ char *strchr(), *strrchr();
#define MUL_R(A,B) ((A)*(B)) #define MUL_R(A,B) ((A)*(B))
#define MUL_C(A,B) ((A)*(B)) #define MUL_C(A,B) ((A)*(B))
#define MUL_F(A,B) ((A)*(B)) #define MUL_F(A,B) ((A)*(B))
#define MUL_Q2(A,B) ((A)*(B))
/* Complex multiplication */ /* Complex multiplication */
static INLINE void ComplexMult(real_t *y1, real_t *y2, static INLINE void ComplexMult(real_t *y1, real_t *y2,
@ -309,6 +310,7 @@ char *strchr(), *strrchr();
#define MUL_R(A,B) ((A)*(B)) #define MUL_R(A,B) ((A)*(B))
#define MUL_C(A,B) ((A)*(B)) #define MUL_C(A,B) ((A)*(B))
#define MUL_F(A,B) ((A)*(B)) #define MUL_F(A,B) ((A)*(B))
#define MUL_Q2(A,B) ((A)*(B))
#define REAL_CONST(A) ((real_t)(A)) #define REAL_CONST(A) ((real_t)(A))
#define COEF_CONST(A) ((real_t)(A)) #define COEF_CONST(A) ((real_t)(A))

View file

@ -38,9 +38,11 @@
#include "sbr_noise.h" #include "sbr_noise.h"
#ifdef FIXED_POINT #ifdef FIXED_POINT
#define REAL_SCALE(A) ((A)<<REAL_BITS) #define REAL_UPSCALE(A) ((A)<<REAL_BITS)
#define REAL_DOWNSCALE(A) ((A)>>REAL_BITS)
#else #else
#define REAL_SCALE(A) (A) #define REAL_UPSCALE(A) (A)
#define REAL_DOWNSCALE(A) (A)
#endif #endif
/* static function declarations */ /* static function declarations */
@ -156,10 +158,10 @@ static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++) for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
{ {
tmp = QMF_RE(Xsbr[i][m + sbr->kx]); tmp = QMF_RE(Xsbr[i][m + sbr->kx]);
nrg += MUL_R(tmp, (tmp>>REAL_BITS)); nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#ifndef SBR_LOW_POWER #ifndef SBR_LOW_POWER
tmp = QMF_IM(Xsbr[i][m + sbr->kx]); tmp = QMF_IM(Xsbr[i][m + sbr->kx]);
nrg += MUL_R(tmp, (tmp>>REAL_BITS)); nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#endif #endif
} }
@ -192,10 +194,10 @@ static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
for (j = k_l; j < k_h; j++) for (j = k_l; j < k_h; j++)
{ {
tmp = QMF_RE(Xsbr[i][j]); tmp = QMF_RE(Xsbr[i][j]);
nrg += MUL_R(tmp, (tmp>>REAL_BITS)); nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#ifndef SBR_LOW_POWER #ifndef SBR_LOW_POWER
tmp = QMF_IM(Xsbr[i][j]); tmp = QMF_IM(Xsbr[i][j]);
nrg += MUL_R(tmp, (tmp>>REAL_BITS)); nrg += MUL_R(tmp, REAL_DOWNSCALE(tmp));
#endif #endif
} }
} }
@ -1151,7 +1153,6 @@ static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
real_t den = 0; real_t den = 0;
real_t acc1 = 0; real_t acc1 = 0;
real_t acc2 = 0; real_t acc2 = 0;
uint8_t current_res_band_size = 0;
uint8_t ml1, ml2; uint8_t ml1, ml2;
@ -1382,11 +1383,7 @@ static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg,
/* E_total_est: integer */ /* E_total_est: integer */
/* E_total: integer */ /* E_total: integer */
E_total_est += sbr->E_curr[ch][m-sbr->kx][l]; E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
#ifdef FIXED_POINT
E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]); E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
#else
E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
#endif
} }
/* G_target: fixed point */ /* G_target: fixed point */
@ -1414,11 +1411,7 @@ static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg,
MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]); MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
/* acc: integer */ /* acc: integer */
#ifdef FIXED_POINT
acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]); acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
#else
acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
#endif
} }
/* acc: fixed point */ /* acc: fixed point */
@ -1430,11 +1423,7 @@ static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg,
} }
for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++) for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
{ {
#ifdef FIXED_POINT
adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]); adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
#else
adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
#endif
} }
} }
} }
@ -1556,33 +1545,24 @@ static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
/* the smoothed gain values are applied to Xsbr */ /* the smoothed gain values are applied to Xsbr */
/* V is defined, not calculated */ /* V is defined, not calculated */
#ifndef FIXED_POINT
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = G_filt * QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx])
+ MUL_F(Q_filt, RE(V[fIndexNoise]));
#else
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
+ MUL_F(Q_filt, RE(V[fIndexNoise])); + MUL_F(Q_filt, RE(V[fIndexNoise]));
#endif
if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42) if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320; QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
#ifndef SBR_LOW_POWER #ifndef SBR_LOW_POWER
#ifndef FIXED_POINT
QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = G_filt * QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx])
+ MUL_F(Q_filt, IM(V[fIndexNoise]));
#else
QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
+ MUL_F(Q_filt, IM(V[fIndexNoise])); + MUL_F(Q_filt, IM(V[fIndexNoise]));
#endif
#endif #endif
{ {
int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1); int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine]; QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += REAL_SCALE(QMF_RE(psi)); QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += REAL_UPSCALE(QMF_RE(psi));
#ifndef SBR_LOW_POWER #ifndef SBR_LOW_POWER
QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine]; QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += REAL_SCALE(QMF_IM(psi)); QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += REAL_UPSCALE(QMF_IM(psi));
#else #else
i_min1 = (fIndexSine - 1) & 3; i_min1 = (fIndexSine - 1) & 3;
@ -1593,29 +1573,29 @@ static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
real_t tmp3 = 0; real_t tmp3 = 0;
if ((m == 0) && (phi_re[i_plus1] != 0)) if ((m == 0) && (phi_re[i_plus1] != 0))
{ {
tmp1 += (phi_re[i_plus1] * MUL_F(REAL_SCALE(adj->S_M_boost[l][0]), FRAC_CONST(0.00815))); tmp1 += (phi_re[i_plus1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][0]), FRAC_CONST(0.00815)));
if (sbr->M != 0) if (sbr->M != 0)
{ {
tmp2 -= (phi_re[i_plus1] * MUL_F(REAL_SCALE(adj->S_M_boost[l][1]), FRAC_CONST(0.00815))); tmp2 -= (phi_re[i_plus1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][1]), FRAC_CONST(0.00815)));
} }
} }
if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
{ {
tmp2 -= (phi_re[i_min1] * MUL_F(REAL_SCALE(adj->S_M_boost[l][m - 1]), FRAC_CONST(0.00815))); tmp2 -= (phi_re[i_min1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m - 1]), FRAC_CONST(0.00815)));
} }
if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0)) if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
{ {
tmp2 -= (phi_re[i_plus1] * MUL_F(REAL_SCALE(adj->S_M_boost[l][m + 1]), FRAC_CONST(0.00815))); tmp2 -= (phi_re[i_plus1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m + 1]), FRAC_CONST(0.00815)));
} }
if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
{ {
if (m > 0) if (m > 0)
{ {
tmp2 -= (phi_re[i_min1] * MUL_F(REAL_SCALE(adj->S_M_boost[l][m - 1]), FRAC_CONST(0.00815))); tmp2 -= (phi_re[i_min1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m - 1]), FRAC_CONST(0.00815)));
} }
if (m + sbr->kx < 64) if (m + sbr->kx < 64)
{ {
tmp3 += (phi_re[i_min1] * MUL_F(REAL_SCALE(adj->S_M_boost[l][m]), FRAC_CONST(0.00815))); tmp3 += (phi_re[i_min1] * MUL_F(REAL_UPSCALE(adj->S_M_boost[l][m]), FRAC_CONST(0.00815)));
} }
} }

View file

@ -185,6 +185,20 @@ typedef struct
real_t det; real_t det;
} acorr_coef; } acorr_coef;
/* Within auto_correlation(...) a pre-shift of >>2 is needed to avoid overflow
* when multiply-adding the FRACT-variables -- FRACT part is 31 bits. After the
* calculation has been finished the result 'ac->det' needs to be
* post-shifted by <<(4*2). This pre-/post-shifting is needed for FIXED_POINT
* only. */
#ifdef FIXED_POINT
#define ACDET_EXP 2
#define ACDET_PRE(A) (A)>>ACDET_EXP
#define ACDET_POST(A) (A)<<(4*ACDET_EXP)
#else
#define ACDET_PRE(A) (A)
#define ACDET_POST(A) (A)
#endif
#ifdef SBR_LOW_POWER #ifdef SBR_LOW_POWER
static void auto_correlation(sbr_info *sbr, acorr_coef *ac, static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
qmf_t buffer[MAX_NTSRHFG][64], qmf_t buffer[MAX_NTSRHFG][64],
@ -194,41 +208,31 @@ static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
real_t tmp1, tmp2; real_t tmp1, tmp2;
int8_t j; int8_t j;
uint8_t offset = sbr->tHFAdj; uint8_t offset = sbr->tHFAdj;
#ifdef FIXED_POINT
const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);
/* A pre-shift of >>2 is needed to avoid overflow when multiply-adding
* the FRACT-variables buffer -- FRACT part is 31 bits. After the
* calculation has been finished the result 'ac.det' needs to be
* post-shifted by <<(4*exp). */
const uint32_t exp = 2;
#else
const real_t rel = 1 / (1 + 1e-6f);
const uint32_t exp = 0;
#endif
for (j = offset; j < len + offset; j++) for (j = offset; j < len + offset; j++)
{ {
real_t buf_j = QMF_RE(buffer[j ][bd]) >> exp; real_t buf_j = ACDET_PRE(QMF_RE(buffer[j ][bd]));
real_t buf_j_1 = QMF_RE(buffer[j-1][bd]) >> exp; real_t buf_j_1 = ACDET_PRE(QMF_RE(buffer[j-1][bd]));
real_t buf_j_2 = QMF_RE(buffer[j-2][bd]) >> exp; real_t buf_j_2 = ACDET_PRE(QMF_RE(buffer[j-2][bd]));
r01 += MUL_F(buf_j , buf_j_1); r01 += MUL_F(buf_j , buf_j_1);
r02 += MUL_F(buf_j , buf_j_2); r02 += MUL_F(buf_j , buf_j_2);
r11 += MUL_F(buf_j_1, buf_j_1); r11 += MUL_F(buf_j_1, buf_j_1);
} }
tmp1 = QMF_RE(buffer[len+offset-1][bd]) >> exp; tmp1 = ACDET_PRE(QMF_RE(buffer[len+offset-1][bd]));
tmp2 = QMF_RE(buffer[ offset-1][bd]) >> exp; tmp2 = ACDET_PRE(QMF_RE(buffer[ offset-1][bd]));
RE(ac->r12) = r01 - MUL_F(tmp1, tmp1) + MUL_F(tmp2, tmp2); RE(ac->r12) = r01 - MUL_F(tmp1, tmp1) + MUL_F(tmp2, tmp2);
tmp1 = QMF_RE(buffer[len+offset-2][bd]) >> exp; tmp1 = ACDET_PRE(QMF_RE(buffer[len+offset-2][bd]));
tmp2 = QMF_RE(buffer[ offset-2][bd]) >> exp; tmp2 = ACDET_PRE(QMF_RE(buffer[ offset-2][bd]));
RE(ac->r22) = r11 - MUL_F(tmp1, tmp1) + MUL_F(tmp2, tmp2); RE(ac->r22) = r11 - MUL_F(tmp1, tmp1) + MUL_F(tmp2, tmp2);
RE(ac->r01) = r01; RE(ac->r01) = r01;
RE(ac->r02) = r02; RE(ac->r02) = r02;
RE(ac->r11) = r11; RE(ac->r11) = r11;
ac->det = MUL_F(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_F(RE(ac->r12), RE(ac->r12)), rel); ac->det = MUL_F(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_F(RE(ac->r12), RE(ac->r12)), rel);
ac->det <<= (4*exp); /* Post-shift as described above. */ ac->det = ACDET_POST(ac->det);
} }
#else #else
static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64], static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64],
@ -239,22 +243,12 @@ static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTS
real_t temp4_r, temp4_i, temp5_r, temp5_i; real_t temp4_r, temp4_i, temp5_r, temp5_i;
int8_t j; int8_t j;
uint8_t offset = sbr->tHFAdj; uint8_t offset = sbr->tHFAdj;
#ifdef FIXED_POINT
const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);
/* A pre-shift of >>2 is needed to avoid overflow when multiply-adding
* the FRACT-variables buffer -- FRACT part is 31 bits. After the
* calculation has been finished the result 'ac.det' needs to be
* post-shifted by <<(4*exp). */
const uint32_t exp = 2;
#else
const real_t rel = 1 / (1 + 1e-6f);
const uint32_t exp = 0;
#endif
temp2_r = QMF_RE(buffer[offset-2][bd]) >> exp; temp2_r = ACDET_PRE(QMF_RE(buffer[offset-2][bd]));
temp2_i = QMF_IM(buffer[offset-2][bd]) >> exp; temp2_i = ACDET_PRE(QMF_IM(buffer[offset-2][bd]));
temp3_r = QMF_RE(buffer[offset-1][bd]) >> exp; temp3_r = ACDET_PRE(QMF_RE(buffer[offset-1][bd]));
temp3_i = QMF_IM(buffer[offset-1][bd]) >> exp; temp3_i = ACDET_PRE(QMF_IM(buffer[offset-1][bd]));
// Save these because they are needed after loop // Save these because they are needed after loop
temp4_r = temp2_r; temp4_r = temp2_r;
temp4_i = temp2_i; temp4_i = temp2_i;
@ -267,8 +261,8 @@ static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTS
temp1_i = temp2_i; temp1_i = temp2_i;
temp2_r = temp3_r; temp2_r = temp3_r;
temp2_i = temp3_i; temp2_i = temp3_i;
temp3_r = QMF_RE(buffer[j][bd]) >> exp; temp3_r = ACDET_PRE(QMF_RE(buffer[j][bd]));
temp3_i = QMF_IM(buffer[j][bd]) >> exp; temp3_i = ACDET_PRE(QMF_IM(buffer[j][bd]));
r01r += MUL_F(temp3_r, temp2_r) + MUL_F(temp3_i, temp2_i); r01r += MUL_F(temp3_r, temp2_r) + MUL_F(temp3_i, temp2_i);
r01i += MUL_F(temp3_i, temp2_r) - MUL_F(temp3_r, temp2_i); r01i += MUL_F(temp3_i, temp2_r) - MUL_F(temp3_r, temp2_i);
r02r += MUL_F(temp3_r, temp1_r) + MUL_F(temp3_i, temp1_i); r02r += MUL_F(temp3_r, temp1_r) + MUL_F(temp3_i, temp1_i);
@ -289,7 +283,7 @@ static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTS
RE(ac->r11) = r11r; RE(ac->r11) = r11r;
ac->det = MUL_F(RE(ac->r11), RE(ac->r22)) - MUL_F((MUL_F(RE(ac->r12), RE(ac->r12)) + MUL_F(IM(ac->r12), IM(ac->r12))), rel); ac->det = MUL_F(RE(ac->r11), RE(ac->r22)) - MUL_F((MUL_F(RE(ac->r12), RE(ac->r12)) + MUL_F(IM(ac->r12), IM(ac->r12))), rel);
ac->det <<= (4*exp); /* Post-shift as described above. */ ac->det = ACDET_POST(ac->det);
} }
#endif #endif