1
0
Fork 0
forked from len0rd/rockbox

Functional, but minimal LCD driver for H10.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@10663 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Barry Wardell 2006-08-20 10:18:47 +00:00
parent 6e0e0f9b72
commit 9272dfd34c
3 changed files with 176 additions and 264 deletions

View file

@ -115,15 +115,19 @@ void main(void)
);
*/
int i;
/*int i;
int rc;
int btn;
int fd;
int fd;*/
char buffer[24];
snprintf(buffer, 24, "Hello World");
lcd_puts(0, 0, buffer);
lcd_update();
i=ata_init();
/*i=ata_init();
disk_init();
rc = disk_mount_all();
rc = disk_mount_all();*/
/* Load original iriver firmware. Uses load_iriver(buf) to load the
decrypted mi4 file from disk to DRAM. This then copies that part of DRAM
@ -139,7 +143,7 @@ void main(void)
/* This assumes that /test.txt exists */
fd=open("/test.txt",O_RDWR);
/*fd=open("/test.txt",O_RDWR);*/
/*
@ -223,16 +227,16 @@ void main(void)
/* Apparently necessary for the data to be actually written to file */
fsync(fd);
udelay(1000000);
/*fsync(fd);
udelay(1000000);*/
/* This causes the device to shut off instantly
GPIOF_OUTPUT_VAL = 0;
*/
close(fd);
udelay(1000000);
/*close(fd);*/
udelay(100000000);
}
/* These functions are present in the firmware library, but we reimplement

View file

@ -1,5 +1,5 @@
/*
* This config file is for the iriver H10
* This config file is for the iriver H10 20Gb
*/
#define TARGET_TREE /* this target is using the target tree system */
@ -96,8 +96,8 @@
/* TODO: this is probably wrong */
#define CPU_FREQ 11289600
/* Type of LCD TODO: hopefully the same as the x5 but check this*/
#define CONFIG_LCD LCD_X5
/* Type of LCD */
#define CONFIG_LCD LCD_H10
/* Offset ( in the firmware file's header ) to the file length */
#define FIRMWARE_OFFSET_FILE_LENGTH 0

View file

@ -16,252 +16,133 @@
* KIND, either express or implied.
*
****************************************************************************/
/* The H10 display possibly identical to that of the X5, so that code was used here
but left #if 0'ed out for the moment */
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
static bool display_on=false; /* is the display turned on? */
/* check if number of useconds has past */
static inline bool timer_check(int clock_start, int usecs)
{
return ((int)(USEC_TIMER - clock_start)) >= usecs;
}
#define LCD_CMD *(volatile unsigned short *)0x70003008 /* or maybe 0x70008a0c */
#define LCD_DATA *(volatile unsigned short *)0x70003010
/* Hardware address of LCD. Bits are:
* 31 - set to write, poll for completion.
* 24 - 0 for command, 1 for data
* 7..0 - command/data to send
* Commands/Data are always sent in 16-bits, msb first.
*/
#define LCD_BASE *(volatile unsigned int *)0x70008a0c
#define LCD_BUSY_MASK 0x80000000
#define LCD_CMD 0x80000000
#define LCD_DATA 0x81000000
/* register defines for the Renesas HD66773R */
#define R_HORIZ_RAM_ADDR_POS 0x16
#define R_VERT_RAM_ADDR_POS 0x17
#define R_START_OSC 0x00
#define R_DEVICE_CODE_READ 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_AC_CONTROL 0x02
#define R_POWER_CONTROL1 0x03
#define R_POWER_CONTROL2 0x04
#define R_ENTRY_MODE 0x05
#define R_COMPARE_REG 0x06
#define R_DISP_CONTROL 0x07
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_POWER_CONTROL3 0x0c
#define R_POWER_CONTROL4 0x0d
#define R_POWER_CONTROL5 0x0e
#define R_GATE_SCAN_START_POS 0x0f
#define R_VERT_SCROLL_CONTROL 0x11
#define R_1ST_SCR_DRV_POS 0x14
#define R_2ND_SCR_DRV_POS 0x15
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
#define R_RAM_WRITE_DATA_MASK 0x20
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_RAM_READ_DATA 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_POS 0x3a
#define R_GAMMA_AMP_ADJ_NEG 0x3b
/*****************************************************
The table below was generated by the following script:
#!/usr/bin/perl
# high byte table
print "short high8to9[] = {\n";
$str = " ";
for my $m (0 .. 255) {
# RRRRRGGG => RRRRR0GGG
my $v = (($m & 0xF8) << 1) | ($m & 0x07);
if(length($str) > 75) {
print "$str\n";
$str=" ";
}
$str .= sprintf("0x%03x, ", $v);
}
print "$str\n};\n";
*****************************************************/
/* Lookup table for 16->18bit conversion, high byte. The low byte is just
shifted. */
const short high8to9[] ICONST_ATTR = {
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x010, 0x011, 0x012,
0x013, 0x014, 0x015, 0x016, 0x017, 0x020, 0x021, 0x022, 0x023, 0x024, 0x025,
0x026, 0x027, 0x030, 0x031, 0x032, 0x033, 0x034, 0x035, 0x036, 0x037, 0x040,
0x041, 0x042, 0x043, 0x044, 0x045, 0x046, 0x047, 0x050, 0x051, 0x052, 0x053,
0x054, 0x055, 0x056, 0x057, 0x060, 0x061, 0x062, 0x063, 0x064, 0x065, 0x066,
0x067, 0x070, 0x071, 0x072, 0x073, 0x074, 0x075, 0x076, 0x077, 0x080, 0x081,
0x082, 0x083, 0x084, 0x085, 0x086, 0x087, 0x090, 0x091, 0x092, 0x093, 0x094,
0x095, 0x096, 0x097, 0x0a0, 0x0a1, 0x0a2, 0x0a3, 0x0a4, 0x0a5, 0x0a6, 0x0a7,
0x0b0, 0x0b1, 0x0b2, 0x0b3, 0x0b4, 0x0b5, 0x0b6, 0x0b7, 0x0c0, 0x0c1, 0x0c2,
0x0c3, 0x0c4, 0x0c5, 0x0c6, 0x0c7, 0x0d0, 0x0d1, 0x0d2, 0x0d3, 0x0d4, 0x0d5,
0x0d6, 0x0d7, 0x0e0, 0x0e1, 0x0e2, 0x0e3, 0x0e4, 0x0e5, 0x0e6, 0x0e7, 0x0f0,
0x0f1, 0x0f2, 0x0f3, 0x0f4, 0x0f5, 0x0f6, 0x0f7, 0x100, 0x101, 0x102, 0x103,
0x104, 0x105, 0x106, 0x107, 0x110, 0x111, 0x112, 0x113, 0x114, 0x115, 0x116,
0x117, 0x120, 0x121, 0x122, 0x123, 0x124, 0x125, 0x126, 0x127, 0x130, 0x131,
0x132, 0x133, 0x134, 0x135, 0x136, 0x137, 0x140, 0x141, 0x142, 0x143, 0x144,
0x145, 0x146, 0x147, 0x150, 0x151, 0x152, 0x153, 0x154, 0x155, 0x156, 0x157,
0x160, 0x161, 0x162, 0x163, 0x164, 0x165, 0x166, 0x167, 0x170, 0x171, 0x172,
0x173, 0x174, 0x175, 0x176, 0x177, 0x180, 0x181, 0x182, 0x183, 0x184, 0x185,
0x186, 0x187, 0x190, 0x191, 0x192, 0x193, 0x194, 0x195, 0x196, 0x197, 0x1a0,
0x1a1, 0x1a2, 0x1a3, 0x1a4, 0x1a5, 0x1a6, 0x1a7, 0x1b0, 0x1b1, 0x1b2, 0x1b3,
0x1b4, 0x1b5, 0x1b6, 0x1b7, 0x1c0, 0x1c1, 0x1c2, 0x1c3, 0x1c4, 0x1c5, 0x1c6,
0x1c7, 0x1d0, 0x1d1, 0x1d2, 0x1d3, 0x1d4, 0x1d5, 0x1d6, 0x1d7, 0x1e0, 0x1e1,
0x1e2, 0x1e3, 0x1e4, 0x1e5, 0x1e6, 0x1e7, 0x1f0, 0x1f1, 0x1f2, 0x1f3, 0x1f4,
0x1f5, 0x1f6, 0x1f7,
};
/* called very frequently - inline! */
inline void lcd_write_reg(int reg, int val)
static void lcd_wait_write(void)
{
LCD_CMD = (reg >> 8) << 1;
LCD_CMD = (reg & 0xff) << 1;
LCD_DATA = (val >> 8) << 1;
LCD_DATA = (val & 0xff) << 1;
}
if ((LCD_BASE & LCD_BUSY_MASK) != 0) {
int start = USEC_TIMER;
/* called very frequently - inline! */
inline void lcd_begin_write_gram(void)
{
LCD_CMD = (R_WRITE_DATA_2_GRAM >> 8) << 1;
LCD_CMD = (R_WRITE_DATA_2_GRAM & 0xff) << 1;
}
/* called very frequently - inline! */
inline void lcd_write_data(const unsigned short* p_bytes, int count) ICODE_ATTR;
inline void lcd_write_data(const unsigned short* p_bytes, int count)
{
unsigned int tmp;
unsigned int *ptr = (unsigned int *)p_bytes;
bool extra;
/* if there's on odd number of pixels, remmber this and output the
trailing pixel after the loop */
extra = (count&1)?true:false;
count >>= 1;
while(count--) {
tmp = *ptr++;
LCD_DATA = high8to9[tmp >> 24];
LCD_DATA = tmp>>15;
LCD_DATA = high8to9[(tmp >> 8)&255];
LCD_DATA = tmp<<1;
}
if(extra) {
/* the final "spare" pixel */
unsigned short read = *(unsigned short *)ptr;
LCD_DATA = high8to9[read >> 8];
LCD_DATA = read<<1;
do {
if ((LCD_BASE & LCD_BUSY_MASK) == 0) break;
} while (timer_check(start, 1000) == 0);
}
}
/* Send command */
static void lcd_send_cmd(int v)
{
lcd_wait_write();
LCD_BASE = 0x00000000 | LCD_CMD;
LCD_BASE = v | LCD_CMD;
}
/* Send 16-bit data */
static void lcd_send_data(int v)
{
lcd_wait_write();
LCD_BASE = ( v & 0xff) | LCD_DATA; /* Send MSB first */
LCD_BASE = ((v>>8) & 0xff) | LCD_DATA;
}
/* Send two 16-bit data */
static void lcd_send_data2(int v)
{
unsigned int vsr = v;
lcd_send_data(vsr);
vsr = v >> 16;
lcd_send_data(vsr);
}
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return 16;
}
void lcd_set_contrast(int val)
{
if (val >= 15) // val must'nt be 15 or 31
++val;
if (val > 30)
return;
lcd_write_reg(0x0e, 0x201e + (val << 8));
/* TODO: Implement lcd_set_contrast() */
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
/* TODO: Implement lcd_set_invert_display() */
(void)yesno;
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
(void)yesno;
/* TODO: Implement lcd_set_flip() */
(void)yesno;
}
/* Rolls up the lcd display by the specified amount of lines.
* Lines that are rolled out over the top of the screen are
* rolled in from the bottom again. This is a hardware
* remapping only and all operations on the lcd are affected.
* ->
* @param int lines - The number of lines that are rolled.
* The value must be 0 <= pixels < LCD_HEIGHT. */
void lcd_roll(int lines)
{
(void)lines;
}
/* LCD init
* These settings are taken from the original X5 firmware
*/
/* LCD init */
void lcd_init_device(void)
{
display_on=true;
#if 0
/* LCD Reset */
and_l(~0x00000010, &GPIO1_OUT);
or_l(0x00000010, &GPIO1_ENABLE);
or_l(0x00000010, &GPIO1_FUNCTION);
sleep(HZ/100);
or_l(0x00000010, &GPIO1_OUT);
sleep(HZ/100);
lcd_write_reg(0, 0x0001);
sleep(HZ/50);
lcd_write_reg(0x0d, 0x0401);
lcd_write_reg(0x0e, 0x321e);
lcd_write_reg(0x01, 0x0313);
lcd_write_reg(0x02, 0x0700);
lcd_write_reg(0x05, 0x9038);
lcd_write_reg(0x06, 0x0000);
lcd_write_reg(0x0b, 0x4000);
sleep(HZ/100);
lcd_write_reg(0x21,0x0000);
lcd_write_reg(0x30,0x0003);
lcd_write_reg(0x31,0x0400);
lcd_write_reg(0x32,0x0407);
lcd_write_reg(0x33,0x0305);
lcd_write_reg(0x34,0x0003);
lcd_write_reg(0x35,0x0704);
lcd_write_reg(0x36,0x0407);
lcd_write_reg(0x37,0x0503);
lcd_write_reg(0x0f,0x0002);
lcd_write_reg(0x11,0x0000);
lcd_write_reg(0x14,0x9f00);
lcd_write_reg(0x15,0x5c00);
lcd_write_reg(0x16,0x7f00);
lcd_write_reg(0x17,0x9f00);
lcd_write_reg(0x3a,0x1409);
lcd_write_reg(0x3b,0x0602);
lcd_write_reg(0x0c,0x0001);
sleep(HZ/25);
lcd_write_reg(0x03,0x002c);
lcd_write_reg(0x04,0x8000);
sleep(HZ/25);
lcd_write_reg(0x0e,0x3318);
sleep(HZ/25);
lcd_write_reg(0x0d,0x0411);
sleep(HZ/100);
lcd_write_reg(0x07,0x0006);
lcd_write_reg(0x07,0x036);
lcd_write_reg(0x07,0x037);
lcd_write_reg(0x07,0x0037);
return;
#endif
}
void lcd_enable(bool on)
{
display_on = on;
{
/* H10 LCD is initialised by the bootloader */
}
/*** update functions ***/
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
note that by and bheight are in 4-pixel units! */
void lcd_blit(const fb_data* data, int x, int by, int width,
int bheight, int stride)
{
@ -272,56 +153,83 @@ void lcd_blit(const fb_data* data, int x, int by, int width,
(void)width;
(void)bheight;
(void)stride;
/*if(display_on)*/
}
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
int y0, x0, y1, x1;
int newx,newwidth;
unsigned long *addr = (unsigned long *)lcd_framebuffer;
/* Ensure x and width are both even - so we can read 32-bit aligned
data from lcd_framebuffer */
/*newx=x&~1;
newwidth=width&~1;
if (newx+newwidth < x+width) { newwidth+=2; }
x=newx; width=newwidth;*/
/* calculate the drawing region */
y0 = x; /* start horiz */
x0 = y; /* start vert */
y1 = (x + width) - 1; /* max horiz */
x1 = (y + height) - 1; /* max vert */
/* swap max horiz < start horiz */
if (y1 < y0) {
int t;
t = y0;
y0 = y1;
y1 = t;
}
/* swap max vert < start vert */
if (x1 < x0) {
int t;
t = x0;
x0 = x1;
x1 = t;
}
/* max horiz << 8 | start horiz */
lcd_send_cmd(R_HORIZ_RAM_ADDR_POS);
lcd_send_data((y0 << 8) | y1);
/* max vert << 8 | start vert */
lcd_send_cmd(R_VERT_RAM_ADDR_POS);
lcd_send_data((x0 << 8) | x1);
/* position cursor (set AD0-AD15) */
/* start vert << 8 | start horiz */
lcd_send_cmd(R_RAM_ADDR_SET);
lcd_send_data(((x0 << 8) | y0));
/* start drawing */
lcd_send_cmd(R_WRITE_DATA_2_GRAM);
addr = (unsigned long*)&lcd_framebuffer[y][x];
int c, r;
/* for each row */
for (r = 0; r < height; r++) {
/* for each column */
for (c = 0; c < width; c += 2) {
/* output 2 pixels */
lcd_send_data2(*(addr++));
}
addr += (LCD_WIDTH - width)/2;
}
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
if(display_on){
/* Copy display bitmap to hardware */
lcd_write_reg(R_RAM_ADDR_SET, 0x0000);
lcd_begin_write_gram();
lcd_write_data((unsigned short *)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT);
}
}
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
if(display_on) {
int ymax = y + height;
if(x + width > LCD_WIDTH)
width = LCD_WIDTH - x;
if (width <= 0)
return; /* nothing left to do, 0 is harmful to lcd_write_data() */
if(ymax >= LCD_HEIGHT)
ymax = LCD_HEIGHT-1;
/* set update window */
/* horiz ram addr */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (ymax<<8) | y);
/* vert ram addr */
lcd_write_reg(R_VERT_RAM_ADDR_POS,((x+width-1)<<8) | x);
lcd_write_reg(R_RAM_ADDR_SET, (x<<8) | y);
lcd_begin_write_gram();
/* Copy specified rectangle bitmap to hardware */
for (; y <= ymax; y++)
{
lcd_write_data ((unsigned short *)&lcd_framebuffer[y][x], width);
}
/* reset update window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, 0x7f00);
lcd_write_reg(R_VERT_RAM_ADDR_POS, 0x9f00);
}
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}