1
0
Fork 0
forked from len0rd/rockbox

* Sync Speex codec with Speex SVN revision 12449 (roughly Speex 1.2beta1).

* Redo the changes required to make Speex compile in Rockbox. Should be a bit easier to keep in sync with Speex SVN now.
* Fix name of Speex library in codecs Makefile.



git-svn-id: svn://svn.rockbox.org/rockbox/trunk@12254 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Dan Everton 2007-02-10 11:44:26 +00:00
parent 5158751263
commit 7bf62e8da6
70 changed files with 4847 additions and 3314 deletions

View file

@ -34,181 +34,89 @@
#include "config.h"
#endif
#include "math_approx.h"
#include "misc.h"
spx_int16_t spx_ilog2(spx_uint32_t x)
{
int r=0;
if (x>=(spx_int32_t)65536)
{
x >>= 16;
r += 16;
}
if (x>=256)
{
x >>= 8;
r += 8;
}
if (x>=16)
{
x >>= 4;
r += 4;
}
if (x>=4)
{
x >>= 2;
r += 2;
}
if (x>=2)
{
r += 1;
}
return r;
}
spx_int16_t spx_ilog4(spx_uint32_t x)
{
int r=0;
if (x>=(spx_int32_t)65536)
{
x >>= 16;
r += 8;
}
if (x>=256)
{
x >>= 8;
r += 4;
}
if (x>=16)
{
x >>= 4;
r += 2;
}
if (x>=4)
{
r += 1;
}
return r;
}
#ifdef FIXED_POINT
/* sqrt(x) ~= 0.22178 + 1.29227*x - 0.77070*x^2 + 0.25723*x^3 (for .25 < x < 1) */
/*#define C0 3634
#define C1 21173
#define C2 -12627
#define C3 4215*/
/* sqrt(x) ~= 0.22178 + 1.29227*x - 0.77070*x^2 + 0.25659*x^3 (for .25 < x < 1) */
#define C0 3634
#define C1 21173
#define C2 -12627
#define C3 4215
#define C3 4204
spx_word16_t spx_sqrt(spx_word32_t x)
{
int k=0;
int k;
spx_word32_t rt;
if (x<=0)
return 0;
#if 1
if (x>=16777216)
{
x>>=10;
k+=5;
}
if (x>=1048576)
{
x>>=6;
k+=3;
}
if (x>=262144)
{
x>>=4;
k+=2;
}
if (x>=32768)
{
x>>=2;
k+=1;
}
if (x>=16384)
{
x>>=2;
k+=1;
}
#else
while (x>=16384)
{
x>>=2;
k++;
}
#endif
while (x<4096)
{
x<<=2;
k--;
}
k = spx_ilog4(x)-6;
x = VSHR32(x, (k<<1));
rt = ADD16(C0, MULT16_16_Q14(x, ADD16(C1, MULT16_16_Q14(x, ADD16(C2, MULT16_16_Q14(x, (C3)))))));
if (rt > 16383)
rt = 16383;
if (k>0)
rt <<= k;
else
rt >>= -k;
rt >>=7;
rt = VSHR32(rt,7-k);
return rt;
}
static int intSqrt(int x) {
int xn;
static int sqrt_table[256] = {
0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57,
59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83,
84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102,
103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145,
146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157,
158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168,
169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178,
179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188,
189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197,
198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206,
207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215,
215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223,
224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231,
231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238,
239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246,
246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,
253, 254, 254, 255
};
if (x >= 0x10000) {
if (x >= 0x1000000) {
if (x >= 0x10000000) {
if (x >= 0x40000000) {
xn = sqrt_table[x >> 24] << 8;
} else {
xn = sqrt_table[x >> 22] << 7;
}
} else {
if (x >= 0x4000000) {
xn = sqrt_table[x >> 20] << 6;
} else {
xn = sqrt_table[x >> 18] << 5;
}
}
xn = (xn + 1 + (x / xn)) >> 1;
xn = (xn + 1 + (x / xn)) >> 1;
return ((xn * xn) > x) ? --xn : xn;
} else {
if (x >= 0x100000) {
if (x >= 0x400000) {
xn = sqrt_table[x >> 16] << 4;
} else {
xn = sqrt_table[x >> 14] << 3;
}
} else {
if (x >= 0x40000) {
xn = sqrt_table[x >> 12] << 2;
} else {
xn = sqrt_table[x >> 10] << 1;
}
}
xn = (xn + 1 + (x / xn)) >> 1;
return ((xn * xn) > x) ? --xn : xn;
}
} else {
if (x >= 0x100) {
if (x >= 0x1000) {
if (x >= 0x4000) {
xn = (sqrt_table[x >> 8]) + 1;
} else {
xn = (sqrt_table[x >> 6] >> 1) + 1;
}
} else {
if (x >= 0x400) {
xn = (sqrt_table[x >> 4] >> 2) + 1;
} else {
xn = (sqrt_table[x >> 2] >> 3) + 1;
}
}
return ((xn * xn) > x) ? --xn : xn;
} else {
if (x >= 0) {
return sqrt_table[x] >> 4;
}
}
}
return -1;
}
float spx_sqrtf(float arg)
{
if(arg==0.0)
return 0.0;
else if(arg==1.0)
return 1.0;
else if(arg==2.0)
return 1.414;
else if(arg==3.27)
return 1.8083;
//printf("Sqrt:%f:%f:%f\n",arg,(((float)intSqrt((int)(arg*10000)))/100)+0.0055,(float)spx_sqrt((spx_word32_t)arg));
//return ((float)fastSqrt((int)(arg*2500)))/50;
//LOGF("Sqrt:%d:%d\n",arg,(intSqrt((int)(arg*2500)))/50);
return (((float)intSqrt((int)(arg*10000)))/100)+0.0055;//(float)spx_sqrt((spx_word32_t)arg);
//return 1;
}
/* log(x) ~= -2.18151 + 4.20592*x - 2.88938*x^2 + 0.86535*x^3 (for .5 < x < 1) */
@ -259,6 +167,101 @@ spx_word16_t spx_cos(spx_word16_t x)
}
}
#define L1 32767
#define L2 -7651
#define L3 8277
#define L4 -626
static inline spx_word16_t _spx_cos_pi_2(spx_word16_t x)
{
spx_word16_t x2;
x2 = MULT16_16_P15(x,x);
return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2))))))));
}
spx_word16_t spx_cos_norm(spx_word32_t x)
{
x = x&0x0001ffff;
if (x>SHL32(EXTEND32(1), 16))
x = SUB32(SHL32(EXTEND32(1), 17),x);
if (x&0x00007fff)
{
if (x<SHL32(EXTEND32(1), 15))
{
return _spx_cos_pi_2(EXTRACT16(x));
} else {
return NEG32(_spx_cos_pi_2(EXTRACT16(65536-x)));
}
} else {
if (x&0x0000ffff)
return 0;
else if (x&0x0001ffff)
return -32767;
else
return 32767;
}
}
/*
K0 = 1
K1 = log(2)
K2 = 3-4*log(2)
K3 = 3*log(2) - 2
*/
#define D0 16384
#define D1 11356
#define D2 3726
#define D3 1301
/* Input in Q11 format, output in Q16 */
static spx_word32_t spx_exp2(spx_word16_t x)
{
int integer;
spx_word16_t frac;
integer = SHR16(x,11);
if (integer>14)
return 0x7fffffff;
else if (integer < -15)
return 0;
frac = SHL16(x-SHL16(integer,11),3);
frac = ADD16(D0, MULT16_16_Q14(frac, ADD16(D1, MULT16_16_Q14(frac, ADD16(D2 , MULT16_16_Q14(D3,frac))))));
return VSHR32(EXTEND32(frac), -integer-2);
}
/* Input in Q11 format, output in Q16 */
spx_word32_t spx_exp(spx_word16_t x)
{
if (x>21290)
return 0x7fffffff;
else if (x<-21290)
return 0;
else
return spx_exp2(MULT16_16_P14(23637,x));
}
#define M1 32767
#define M2 -21
#define M3 -11943
#define M4 4936
static inline spx_word16_t spx_atan01(spx_word16_t x)
{
return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
}
/* Input in Q15, output in Q14 */
spx_word16_t spx_atan(spx_word32_t x)
{
if (x <= 32767)
{
return SHR16(spx_atan01(x),1);
} else {
int e = spx_ilog2(x);
if (e>=29)
return 25736;
x = DIV32_16(SHL32(EXTEND32(32767),29-e), EXTRACT16(SHR32(x, e-14)));
return SUB16(25736, SHR16(spx_atan01(x),1));
}
}
#else
#ifndef M_PI
@ -284,161 +287,5 @@ spx_word16_t spx_cos(spx_word16_t x)
return NEG16(C1 + x*(C2+x*(C3+C4*x)));
}
}
#endif
inline float spx_floor(float x){
return ((float)(((int)x)));
}
#define FP_BITS (14)
#define FP_MASK ((1 << FP_BITS) - 1)
#define FP_ONE (1 << FP_BITS)
#define FP_TWO (2 << FP_BITS)
#define FP_HALF (1 << (FP_BITS - 1))
#define FP_LN2 ( 45426 >> (16 - FP_BITS))
#define FP_LN2_INV ( 94548 >> (16 - FP_BITS))
#define FP_EXP_ZERO ( 10922 >> (16 - FP_BITS))
#define FP_EXP_ONE ( -182 >> (16 - FP_BITS))
#define FP_EXP_TWO ( 4 >> (16 - FP_BITS))
// #define FP_INF (0x7fffffff)
// #define FP_LN10 (150902 >> (16 - FP_BITS))
#define FP_MAX_DIGITS (4)
#define FP_MAX_DIGITS_INT (10000)
// #define FP_FAST_MUL_DIV
// #ifdef FP_FAST_MUL_DIV
/* These macros can easily overflow, but they are good enough for our uses,
* and saves some code.
*/
#define fp_mul(x, y) (((x) * (y)) >> FP_BITS)
#define fp_div(x, y) (((x) << FP_BITS) / (y))
#ifndef abs
#define abs(x) (((x)<0)?((x)*-1):(x))
#endif
float spx_sqrt2(float xf) {
long x=(xf*(2.0*FP_BITS));
int i=0, s = (x + FP_ONE) >> 1;
for (; i < 8; i++) {
s = (s + fp_div(x, s)) >> 1;
}
return s/((float)(2*FP_BITS));
}
static int exp_s16p16(int x)
{
int t;
int y = 0x00010000;
if (x < 0) x += 0xb1721, y >>= 16;
t = x - 0x58b91; if (t >= 0) x = t, y <<= 8;
t = x - 0x2c5c8; if (t >= 0) x = t, y <<= 4;
t = x - 0x162e4; if (t >= 0) x = t, y <<= 2;
t = x - 0x0b172; if (t >= 0) x = t, y <<= 1;
t = x - 0x067cd; if (t >= 0) x = t, y += y >> 1;
t = x - 0x03920; if (t >= 0) x = t, y += y >> 2;
t = x - 0x01e27; if (t >= 0) x = t, y += y >> 3;
t = x - 0x00f85; if (t >= 0) x = t, y += y >> 4;
t = x - 0x007e1; if (t >= 0) x = t, y += y >> 5;
t = x - 0x003f8; if (t >= 0) x = t, y += y >> 6;
t = x - 0x001fe; if (t >= 0) x = t, y += y >> 7;
y += ((y >> 8) * x) >> 8;
return y;
}
float spx_expB(float xf) {
return exp_s16p16(xf*32)/32;
}
float spx_expC(float xf){
long x=xf*(2*FP_BITS);
/*
static long fp_exp(long x)
{*/
long k;
long z;
long R;
long xp;
if (x == 0)
{
return FP_ONE;
}
k = (fp_mul(abs(x), FP_LN2_INV) + FP_HALF) & ~FP_MASK;
if (x < 0)
{
k = -k;
}
x -= fp_mul(k, FP_LN2);
z = fp_mul(x, x);
R = FP_TWO + fp_mul(z, FP_EXP_ZERO + fp_mul(z, FP_EXP_ONE
+ fp_mul(z, FP_EXP_TWO)));
xp = FP_ONE + fp_div(fp_mul(FP_TWO, x), R - x);
if (k < 0)
{
k = FP_ONE >> (-k >> FP_BITS);
}
else
{
k = FP_ONE << (k >> FP_BITS);
}
return fp_mul(k, xp)/(2*FP_BITS);
}
/*To generate (ruby code): (0...33).each { |idx| puts Math.exp((idx-10) / 8.0).to_s + "," } */
const float exp_lookup_int[33]={0.28650479686019,0.32465246735835,0.367879441171442,0.416862019678508,0.472366552741015,0.53526142851899,0.606530659712633,0.687289278790972,0.778800783071405,0.882496902584595,1.0,1.13314845306683,1.28402541668774,1.4549914146182,1.64872127070013,1.86824595743222,2.11700001661267,2.3988752939671,2.71828182845905,3.08021684891803,3.49034295746184,3.95507672292058,4.48168907033806,5.07841903718008,5.75460267600573,6.52081912033011,7.38905609893065,8.37289748812726,9.48773583635853,10.7510131860764,12.1824939607035,13.8045741860671,15.6426318841882};
/*To generate (ruby code): (0...32).each { |idx| puts Math.exp((idx-16.0) / 4.0).to_s+","} */
static const float exp_table[32]={0.0183156388887342,0.0235177458560091,0.0301973834223185,0.038774207831722,0.0497870683678639,0.0639278612067076,0.0820849986238988,0.105399224561864,0.135335283236613,0.173773943450445,0.22313016014843,0.28650479686019,0.367879441171442,0.472366552741015,0.606530659712633,0.778800783071405,1.0,1.28402541668774,1.64872127070013,2.11700001661267,2.71828182845905,3.49034295746184,4.48168907033806,5.75460267600573,7.38905609893065,9.48773583635853,12.1824939607035,15.6426318841882,20.0855369231877,25.7903399171931,33.1154519586923,42.5210820000628};
/**Returns exp(x) Range x=-4-+4 {x.0,x.25,x.5,x.75} */
float spx_exp(float xf){
float flt=spx_floor(xf);
if(-4<xf&&4>xf&&(abs(xf-flt)==0.0||abs(xf-flt)==0.25||abs(xf-flt)==0.5||abs(xf-flt)==0.75||abs(xf-flt)==1.0)){
#ifdef SIMULATOR
/* printf("NtbSexp:%f,%d,%f:%f,%f,%f:%d,%d:%d\n",
exp_sqrt_table[(int)((xf+4.0)*4.0)],
(int)((xf-4.0)*4.0),
(xf-4.0)*4.0,
xf,
flt,
xf-flt,
-4<xf,
4>xf,
abs(xf-flt)
);*/
#endif
return exp_table[(int)((xf+4.0)*4.0)];
} else if (-4<xf&&4>xf){
#ifdef SIMULATOR
/* printf("NtbLexp:%f,%f,%f:%d,%d:%d\n",xf,flt,xf-flt,-4<xf,4>xf,abs(xf-flt)); */
#endif
return exp_table[(int)((xf+4.0)*4.0)];
}
#ifdef SIMULATOR
/* printf("NTBLexp:%f,%f,%f:%d,%d:%d\n",xf,flt,xf-flt,-4<xf,4>xf,abs(xf-flt)); */
#endif
return spx_expB(xf);
//return exp(xf);
}
//Placeholders (not fixed point, only used when encoding):
float pow(float a,float b){
return 0;
}
float log(float l){
return 0;
}
float fabs(float a){
return 0;
}
float sin(float a){
return 0;
}