1
0
Fork 0
forked from len0rd/rockbox

iPod Nano 2G NAND/ECC driver and FTL improvements (still polling)

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@22958 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Michael Sparmann 2009-10-05 14:42:25 +00:00
parent 112bc15d65
commit 79bf2da1ef
2 changed files with 176 additions and 51 deletions

View file

@ -26,6 +26,35 @@
#include <nand-target.h>
#include <ftl-target.h>
#include <string.h>
#include "kernel.h"
#include "panic.h"
//#define FTL_FORCEMOUNT
#ifdef FTL_FORCEMOUNT
#ifndef FTL_READONLY
#define FTL_READONLY
#endif
#endif
#ifdef FTL_READONLY
uint32_t ftl_write(uint32_t sector, uint32_t count, const void* buffer)
{
(void)sector;
(void)count;
(void)buffer;
return 1;
}
uint32_t ftl_sync(void)
{
return 0;
}
#endif
@ -371,6 +400,8 @@ uint8_t ftl_erasectr_dirt[8];
#endif
static struct mutex ftl_mtx;
/* Finds a device info page for the specified bank and returns its number.
@ -653,6 +684,7 @@ void ftl_vfl_schedule_block_for_remap(uint32_t bank, uint32_t block)
{
if (ftl_vfl_check_remap_scheduled(bank, block) == 1)
return;
panicf("FTL: Scheduling bank %d block %d for remap!", bank, block);
if (ftl_vfl_cxt[bank].scheduledstart == ftl_vfl_cxt[bank].spareused)
return;
ftl_vfl_cxt[bank].remaptable[--ftl_vfl_cxt[bank].scheduledstart] = block;
@ -738,6 +770,7 @@ uint32_t ftl_vfl_remap_block(uint32_t bank, uint32_t block)
{
uint32_t i;
uint32_t newblock = 0, newidx;
panicf("FTL: Remapping bank %d block %d!", bank, block);
if (bank >= ftl_banks || block >= (*ftl_nand_type).blocks) return 0;
for (i = 0; i < ftl_vfl_cxt[bank].sparecount; i++)
if (ftl_vfl_cxt[bank].remaptable[i] == 0)
@ -949,7 +982,9 @@ uint32_t ftl_open(void)
else
{
/* This will trip if there was an unclean unmount before. */
#ifndef FTL_FORCEMOUNT
break;
#endif
}
}
@ -1030,6 +1065,8 @@ uint32_t ftl_read(uint32_t sector, uint32_t count, void* buffer)
if (count == 0) return 0;
mutex_lock(&ftl_mtx);
for (i = 0; i < count; i++)
{
uint32_t block = (sector + i) / ppb;
@ -1054,6 +1091,9 @@ uint32_t ftl_read(uint32_t sector, uint32_t count, void* buffer)
memset(&((uint8_t*)buffer)[i << 11], 0, 0x800);
}
}
mutex_unlock(&ftl_mtx);
return error;
}
@ -1609,11 +1649,17 @@ uint32_t ftl_write(uint32_t sector, uint32_t count, const void* buffer)
if (count == 0) return 0;
mutex_lock(&ftl_mtx);
if (ftl_cxt.clean_flag == 1)
{
for (i = 0; i < 3; i++)
{
if (ftl_next_ctrl_pool_page() != 0) return 1;
if (ftl_next_ctrl_pool_page() != 0)
{
mutex_unlock(&ftl_mtx);
return 1;
}
memset(ftl_buffer, 0xFF, 0x800);
memset(&ftl_sparebuffer, 0xFF, 0x40);
ftl_sparebuffer.meta.usn = ftl_cxt.usn;
@ -1622,7 +1668,11 @@ uint32_t ftl_write(uint32_t sector, uint32_t count, const void* buffer)
&ftl_sparebuffer) == 0)
break;
}
if (i == 3) return 1;
if (i == 3)
{
mutex_unlock(&ftl_mtx);
return 1;
}
ftl_cxt.clean_flag = 0;
}
@ -1632,7 +1682,11 @@ uint32_t ftl_write(uint32_t sector, uint32_t count, const void* buffer)
uint32_t page = (sector + i) % ppb;
struct ftl_log_type* logentry = ftl_allocate_log_entry(block);
if (logentry == (struct ftl_log_type*)0) return 1;
if (logentry == (struct ftl_log_type*)0)
{
mutex_unlock(&ftl_mtx);
return 1;
}
if (page == 0 && count - i >= ppb)
{
uint32_t vblock = (*logentry).scatteredvblock;
@ -1641,7 +1695,11 @@ uint32_t ftl_write(uint32_t sector, uint32_t count, const void* buffer)
{
ftl_release_pool_block(vblock);
vblock = ftl_allocate_pool_block();
if (vblock == 0) return 1;
if (vblock == 0)
{
mutex_unlock(&ftl_mtx);
return 1;
}
}
ftl_cxt.nextblockusn++;
for (j = 0; j < ppb; j++)
@ -1665,7 +1723,11 @@ uint32_t ftl_write(uint32_t sector, uint32_t count, const void* buffer)
{
ftl_remove_scattered_block(logentry);
logentry = ftl_allocate_log_entry(block);
if (logentry == (struct ftl_log_type*)0) return 1;
if (logentry == (struct ftl_log_type*)0)
{
mutex_unlock(&ftl_mtx);
return 1;
}
}
memset(&ftl_sparebuffer, 0xFF, 0x40);
ftl_sparebuffer.user.lpn = sector + i;
@ -1699,6 +1761,7 @@ uint32_t ftl_write(uint32_t sector, uint32_t count, const void* buffer)
ftl_save_erasectr_page(i);
}
}
mutex_unlock(&ftl_mtx);
return 0;
}
#endif
@ -1745,6 +1808,7 @@ uint32_t ftl_sync(void)
which will just do nothing if everything was already clean. */
uint32_t ftl_init(void)
{
mutex_init(&ftl_mtx);
uint32_t i;
uint32_t result = 0;
uint32_t foundsignature, founddevinfo, blockwiped, repaired, skip;
@ -1755,6 +1819,7 @@ uint32_t ftl_init(void)
ftl_nand_type = nand_get_device_type(0);
foundsignature = 0;
blockwiped = 1;
mutex_unlock(&ftl_mtx);
for (i = 0; i < (*ftl_nand_type).pagesperblock; i++)
{
result = nand_read_page(0, i, ftl_buffer, (uint32_t*)0, 1, 1);
@ -1772,10 +1837,23 @@ uint32_t ftl_init(void)
repaired = 0;
skip = 0;
if (founddevinfo == 0) return 1;
if (foundsignature != 0 && (result & 0x11F) != 0) return 1;
if (founddevinfo == 0)
{
mutex_unlock(&ftl_mtx);
return 1;
}
if (foundsignature != 0 && (result & 0x11F) != 0)
{
mutex_unlock(&ftl_mtx);
return 1;
}
if (ftl_vfl_open() == 0)
if (ftl_open() == 0) return 0;
if (ftl_open() == 0)
{
mutex_unlock(&ftl_mtx);
return 0;
}
/* Something went terribly wrong. We may want to allow the user to erase
block zero in that condition, to make norboot reinitialize the FTL.
@ -1785,5 +1863,7 @@ uint32_t ftl_init(void)
nand_block_erase(0, 0);
*/
mutex_unlock(&ftl_mtx);
return 1;
}

View file

@ -22,6 +22,7 @@
#include "config.h"
#include "system.h"
#include "kernel.h"
#include "cpu.h"
#include "inttypes.h"
#include "nand-target.h"
@ -84,6 +85,11 @@ uint8_t nand_tunk2[4];
uint8_t nand_tunk3[4];
uint32_t nand_type[4];
static struct mutex nand_mtx;
static struct wakeup nand_wakeup;
static struct mutex ecc_mtx;
static struct wakeup ecc_wakeup;
static uint8_t nand_aligned_data[0x800] __attribute__((aligned(32)));
static uint8_t nand_aligned_ctrl[0x200] __attribute__((aligned(32)));
static uint8_t nand_aligned_spare[0x40] __attribute__((aligned(32)));
@ -98,35 +104,60 @@ static uint8_t nand_aligned_ecc[0x28] __attribute__((aligned(32)));
((uint8_t*)(((uint32_t)nand_aligned_ecc) | 0x40000000))
uint32_t nand_unlock(uint32_t rc)
{
mutex_unlock(&nand_mtx);
return rc;
}
uint32_t ecc_unlock(uint32_t rc)
{
mutex_unlock(&ecc_mtx);
return rc;
}
uint32_t nand_timeout(long timeout)
{
if (TIME_AFTER(current_tick, timeout)) return 1;
else
{
yield();
return 0;
}
}
uint32_t nand_wait_rbbdone(void)
{
uint32_t timeout = 0x40000;
while ((FMCSTAT & FMCSTAT_RBBDONE) == 0) if (timeout-- == 0) return 1;
long timeout = current_tick + HZ / 1;
while ((FMCSTAT & FMCSTAT_RBBDONE) == 0)
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_RBBDONE;
return 0;
}
uint32_t nand_wait_cmddone(void)
{
uint32_t timeout = 0x40000;
while ((FMCSTAT & FMCSTAT_CMDDONE) == 0) if (timeout-- == 0) return 1;
long timeout = current_tick + HZ / 1;
while ((FMCSTAT & FMCSTAT_CMDDONE) == 0)
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_CMDDONE;
return 0;
}
uint32_t nand_wait_addrdone(void)
{
uint32_t timeout = 0x40000;
while ((FMCSTAT & FMCSTAT_ADDRDONE) == 0) if (timeout-- == 0) return 1;
long timeout = current_tick + HZ / 1;
while ((FMCSTAT & FMCSTAT_ADDRDONE) == 0)
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_ADDRDONE;
return 0;
}
uint32_t nand_wait_chip_ready(uint32_t bank)
{
uint32_t timeout = 0x40000;
long timeout = current_tick + HZ / 1;
while ((FMCSTAT & (FMCSTAT_BANK0READY << bank)) == 0)
if (timeout-- == 0) return 1;
if (nand_timeout(timeout)) return 1;
FMCSTAT = (FMCSTAT_BANK0READY << bank);
return 0;
}
@ -163,7 +194,7 @@ uint32_t nand_reset(uint32_t bank)
uint32_t nand_wait_status_ready(uint32_t bank)
{
uint32_t timeout = 0x4000;
long timeout = current_tick + HZ / 1;
nand_set_fmctrl0(bank, 0);
if ((FMCSTAT & (FMCSTAT_BANK0READY << bank)) != 0)
FMCSTAT = (FMCSTAT_BANK0READY << bank);
@ -171,7 +202,7 @@ uint32_t nand_wait_status_ready(uint32_t bank)
if (nand_send_cmd(NAND_CMD_GET_STATUS) != 0) return 1;
while (1)
{
if (timeout-- == 0) return 1;
if (nand_timeout(timeout)) return 1;
FMDNUM = 0;
FMCTRL1 = FMCTRL1_DOREADDATA;
if (nand_wait_addrdone() != 0) return 1;
@ -185,7 +216,7 @@ uint32_t nand_wait_status_ready(uint32_t bank)
uint32_t nand_transfer_data(uint32_t bank, uint32_t direction,
void* buffer, uint32_t size)
{
uint32_t timeout = 0x40000;
long timeout = current_tick + HZ / 1;
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
FMDNUM = size - 1;
FMCTRL1 = FMCTRL1_DOREADDATA << direction;
@ -199,7 +230,7 @@ uint32_t nand_transfer_data(uint32_t bank, uint32_t direction,
DMATCNT3 = (size >> 4) - 1;
DMACOM3 = 4;
while ((DMAALLST & DMAALLST_DMABUSY3) != 0)
if (timeout-- == 0) return 1;
if (nand_timeout(timeout)) return 1;
if (nand_wait_addrdone() != 0) return 1;
if (direction == 0) FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
return 0;
@ -207,32 +238,36 @@ uint32_t nand_transfer_data(uint32_t bank, uint32_t direction,
uint32_t ecc_decode(uint32_t size, void* databuffer, void* sparebuffer)
{
uint32_t timeout = 0x40000;
mutex_lock(&ecc_mtx);
long timeout = current_tick + HZ / 1;
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
ECC_UNK1 = size;
ECC_DATA_PTR = (uint32_t)databuffer;
ECC_SPARE_PTR = (uint32_t)sparebuffer;
ECC_CTRL = ECCCTRL_STARTDECODING;
while ((SRCPND & INTMSK_ECC) == 0) if (timeout-- == 0) return 1;
while ((SRCPND & INTMSK_ECC) == 0)
if (nand_timeout(timeout)) return ecc_unlock(1);
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
return ECC_RESULT;
return ecc_unlock(ECC_RESULT);
}
uint32_t ecc_encode(uint32_t size, void* databuffer, void* sparebuffer)
{
uint32_t timeout = 0x40000;
mutex_lock(&ecc_mtx);
long timeout = current_tick + HZ / 1;
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
ECC_UNK1 = size;
ECC_DATA_PTR = (uint32_t)databuffer;
ECC_SPARE_PTR = (uint32_t)sparebuffer;
ECC_CTRL = ECCCTRL_STARTENCODING;
while ((SRCPND & INTMSK_ECC) == 0) if (timeout-- == 0) return 1;
while ((SRCPND & INTMSK_ECC) == 0)
if (nand_timeout(timeout)) return ecc_unlock(1);
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
return 0;
return ecc_unlock(0);
}
uint32_t nand_check_empty(uint8_t* buffer)
@ -246,51 +281,53 @@ uint32_t nand_check_empty(uint8_t* buffer)
uint32_t nand_get_chip_type(uint32_t bank)
{
mutex_lock(&nand_mtx);
uint32_t result;
if (nand_reset(bank) != 0) return 0xFFFFFFFF;
if (nand_send_cmd(0x90) != 0) return 0xFFFFFFFF;
if (nand_reset(bank) != 0) return nand_unlock(0xFFFFFFFF);
if (nand_send_cmd(0x90) != 0) return nand_unlock(0xFFFFFFFF);
FMANUM = 0;
FMADDR0 = 0;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
if (nand_wait_cmddone() != 0) return 0xFFFFFFFF;
if (nand_wait_cmddone() != 0) return nand_unlock(0xFFFFFFFF);
FMDNUM = 4;
FMCTRL1 = FMCTRL1_DOREADDATA;
if (nand_wait_addrdone() != 0) return 0xFFFFFFFF;
if (nand_wait_addrdone() != 0) return nand_unlock(0xFFFFFFFF);
result = FMFIFO;
FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
return result;
return nand_unlock(result);
}
uint32_t nand_read_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc,
uint32_t checkempty)
{
mutex_lock(&nand_mtx);
uint32_t rc, eccresult;
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_READ) != 0) return 1;
if (nand_send_cmd(NAND_CMD_READ) != 0) return nand_unlock(1);
if (nand_send_address(page, (databuffer == 0) ? 0x800 : 0) != 0)
return 1;
if (nand_send_cmd(NAND_CMD_READ2) != 0) return 1;
if (nand_wait_status_ready(bank) != 0) return 1;
return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_READ2) != 0) return nand_unlock(1);
if (nand_wait_status_ready(bank) != 0) return nand_unlock(1);
if (databuffer != 0)
if (nand_transfer_data(bank, 0, nand_uncached_data, 0x800) != 0)
return 1;
return nand_unlock(1);
if (doecc == 0)
{
memcpy(databuffer, nand_uncached_data, 0x800);
if (sparebuffer != 0)
{
if (nand_transfer_data(bank, 0, nand_uncached_spare, 0x40) != 0)
return 1;
return nand_unlock(1);
memcpy(sparebuffer, nand_uncached_spare, 0x800);
if (checkempty != 0)
return nand_check_empty((uint8_t*)sparebuffer) << 1;
}
return 0;
return nand_unlock(0);
}
rc = 0;
if (nand_transfer_data(bank, 0, nand_uncached_spare, 0x40) != 0)
return 1;
return nand_unlock(1);
memcpy(nand_uncached_ecc, &nand_uncached_spare[0xC], 0x28);
rc |= (ecc_decode(3, nand_uncached_data, nand_uncached_ecc) & 0xF) << 4;
if (databuffer != 0) memcpy(databuffer, nand_uncached_data, 0x800);
@ -307,51 +344,54 @@ uint32_t nand_read_page(uint32_t bank, uint32_t page, void* databuffer,
}
if (checkempty != 0) rc |= nand_check_empty(nand_uncached_spare) << 1;
return rc;
return nand_unlock(rc);
}
uint32_t nand_write_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc)
{
mutex_lock(&nand_mtx);
if (sparebuffer != 0) memcpy(nand_uncached_spare, sparebuffer, 0x40);
else memset(nand_uncached_spare, 0xFF, 0x40);
if (doecc != 0)
{
memcpy(nand_uncached_data, databuffer, 0x800);
if (ecc_encode(3, nand_uncached_data, nand_uncached_ecc) != 0)
return 1;
return nand_unlock(1);
memcpy(&nand_uncached_spare[0xC], nand_uncached_ecc, 0x28);
memset(nand_uncached_ctrl, 0xFF, 0x200);
memcpy(nand_uncached_ctrl, nand_uncached_spare, 0xC);
if (ecc_encode(0, nand_uncached_ctrl, nand_uncached_ecc) != 0)
return 1;
return nand_unlock(1);
memcpy(&nand_uncached_spare[0x34], nand_uncached_ecc, 0xC);
}
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_PROGRAM) != 0)
return 1;
return nand_unlock(1);
if (nand_send_address(page, (databuffer == 0) ? 0x800 : 0) != 0)
return 1;
return nand_unlock(1);
if (databuffer != 0)
if (nand_transfer_data(bank, 1, nand_uncached_data, 0x800) != 0)
return 1;
return nand_unlock(1);
if (sparebuffer != 0 || doecc != 0)
if (nand_transfer_data(bank, 1, nand_uncached_spare, 0x40) != 0)
return 1;
if (nand_send_cmd(NAND_CMD_PROGCNFRM) != 0) return 1;
return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_PROGCNFRM) != 0) return nand_unlock(1);
return nand_wait_status_ready(bank);
}
uint32_t nand_block_erase(uint32_t bank, uint32_t page)
{
mutex_lock(&nand_mtx);
nand_set_fmctrl0(bank, 0);
if (nand_send_cmd(NAND_CMD_BLOCKERASE) != 0) return 1;
if (nand_send_cmd(NAND_CMD_BLOCKERASE) != 0) return nand_unlock(1);
FMANUM = 2;
FMADDR0 = page;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
if (nand_wait_cmddone() != 0) return 1;
if (nand_send_cmd(NAND_CMD_ERASECNFRM) != 0) return 1;
return nand_wait_status_ready(bank);
if (nand_wait_cmddone() != 0) return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_ERASECNFRM) != 0) return nand_unlock(1);
if (nand_wait_status_ready(bank) != 0) return nand_unlock(1);
return nand_unlock(0);
}
const struct nand_device_info_type* nand_get_device_type(uint32_t bank)
@ -363,6 +403,11 @@ const struct nand_device_info_type* nand_get_device_type(uint32_t bank)
uint32_t nand_device_init(void)
{
mutex_init(&nand_mtx);
wakeup_init(&nand_wakeup);
mutex_init(&ecc_mtx);
wakeup_init(&ecc_wakeup);
uint32_t type;
uint32_t i, j;
PCON2 = 0x33333333;