1
0
Fork 0
forked from len0rd/rockbox

imx233: rewrite i2c driver

The new driver provides several new features:
- asynchronous transfer
- transactions (several transfers executed at once)
- queueing
The style still provides the legacy interface.

Change-Id: I6d8ecc89d1f7057847c9b2dc69b76cd45c9c8407
This commit is contained in:
Amaury Pouly 2016-05-02 21:57:55 +01:00 committed by Gerrit Rockbox
parent 615c638c7d
commit 4d42e3685c
3 changed files with 356 additions and 78 deletions

View file

@ -24,7 +24,7 @@
#include "fmradio-imx233.h"
#include "fmradio-target.h"
#include "pinctrl-imx233.h"
#include "i2c.h"
#include "i2c-imx233.h"
#include "generic_i2c.h"
#ifndef IMX233_FMRADIO_I2C

View file

@ -45,6 +45,166 @@
* are cache aligned and will copy back the data to user buffers at the end.
* The I2C_BUFFER_SIZE define controls the size of the buffer. All transfers
* should probably fit within 512 bytes.
*
* On top of this, transfers are queued using the 'next' field of imx233_i2c_xfer_t.
* Each time a transfer is programmed, it is translated to dma transfers using
* the dma API.
*/
/**
* Internal DMA API to build the transfer.
* NOTE the api does not perform any locking, it is up to the caller to ensure
* that there only one transfer beint built at any time.
*/
/* start building a transfer */
static void imx233_i2c_begin(void);
/* add a stage
* NOTE for transmit, the data is copied to a buffer so the buffer can be freed
* afer this function return. For receive, buffer must exists until transfer is
* complete. This function assumes any receive transfer is final (master will
* send NAK). */
static void imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop);
/* end building a transfer and start the transfer */
static void imx233_i2c_kick(void);
/* abort transfer (will call imx233_i2c_transfer_complete) */
static void imx233_i2c_abort(void);
/* set speed */
static void imx233_i2c_set_speed(bool fast_mode);
/* callback function when transfer is finished */
static void imx233_i2c_transfer_complete(enum imx233_i2c_error_t status);
/**
* Advanced API
*/
/* NOTE these variables are not marked as volatile because all functions
* do all operation with IRQ disabled, so they won't change their value
* in the middle of a function */
static struct imx233_i2c_xfer_t *i2c_head; /* pointer to the current transfer */
static struct imx233_i2c_xfer_t *i2c_tail; /* pointer to the last transfer */
static struct timeout i2c_tmo; /* timeout */
/* timeout callback */
static int imx233_i2c_timeout(struct timeout *tmo);
/* called in IRQ context or with IRQ disabled */
static void imx233_i2c_start(void)
{
uint8_t addr_wr = i2c_head->dev_addr;
uint8_t addr_rd = i2c_head->dev_addr | 1;
/* translate transfer using DMA API */
imx233_i2c_set_speed(i2c_head->fast_mode);
imx233_i2c_begin();
if(i2c_head->mode == I2C_WRITE)
{
/* START + addr */
imx233_i2c_add(true, true, &addr_wr, 1, false);
/* data + stop if no second stage */
imx233_i2c_add(false, true, i2c_head->data[0], i2c_head->count[0], i2c_head->count[1] == 0);
/* (if second stage) data + stop */
if(i2c_head->count[1] > 0)
imx233_i2c_add(false, true, i2c_head->data[1], i2c_head->count[1], true);
}
else /* I2C_READ */
{
/* (if write stage) */
if(i2c_head->count[0] > 0)
{
/* START + addr */
imx233_i2c_add(true, true, &addr_wr, 1, false);
/* data */
imx233_i2c_add(false, true, i2c_head->data[0], i2c_head->count[0], false);
}
/* START + addr */
imx233_i2c_add(true, true, &addr_rd, 1, false);
/* read data + stop */
imx233_i2c_add(false, false, i2c_head->data[1], i2c_head->count[1], true);
}
/* kick transfer */
imx233_i2c_kick();
/* setup timer for timeout */
if(i2c_head->tmo_ms > 0)
timeout_register(&i2c_tmo, imx233_i2c_timeout, i2c_head->tmo_ms * HZ / 1000, 0);
}
/* unqueue head and notify completion, called with IRQ disabled */
static void imx233_i2c_unqueue_head(enum imx233_i2c_error_t status)
{
/* notify */
if(i2c_head->callback)
i2c_head->callback(i2c_head, status);
/* unqueue */
i2c_head = i2c_head->next;
}
/* callback function when transfer is finished, called with IRQ disabled */
static void imx233_i2c_transfer_complete(enum imx233_i2c_error_t status)
{
/* cancel timeout
* NOTE because IRQ are disabled, the timeout callback will not be called
* until we enable them back, at which point we will have disabled the timeout
* so the completion routine will not be called twice. */
if(i2c_head->tmo_ms > 0)
timeout_cancel(&i2c_tmo);
/* notify completion and unqueue
* WARNING completion callback can queue other transfers, so the only part
* of the queue that cannot change is this transaction, everything else can
* change */
struct imx233_i2c_xfer_t *this_xfer = i2c_head;
struct imx233_i2c_xfer_t *last_xfer = i2c_head->last; /* in transaction */
/* unqueue head */
imx233_i2c_unqueue_head(status);
/* in case of failure, skip others */
if(status != I2C_SUCCESS && this_xfer != last_xfer)
while(i2c_head != last_xfer)
imx233_i2c_unqueue_head(I2C_SKIP);
/* if there is anything left, start it */
if(i2c_head)
imx233_i2c_start();
}
static int imx233_i2c_timeout(struct timeout *tmo)
{
(void) tmo;
imx233_i2c_abort();
return 0; /* do not fire again */
}
void imx233_i2c_transfer(struct imx233_i2c_xfer_t *xfer)
{
/* avoid any race with the irq handler */
unsigned long cpsr = disable_irq_save();
/* before queuing, update link to last transfer in each transfer */
struct imx233_i2c_xfer_t *last = xfer;
while(last->next)
last = last->next;
struct imx233_i2c_xfer_t *tmp = xfer;
while(tmp)
{
tmp->last = last;
tmp = tmp->next;
}
/* no transfer pending: start one */
if(i2c_head == NULL)
{
i2c_head = xfer;
i2c_tail = last;
/* kick transfer now */
imx233_i2c_start();
}
/* pending transer: queue and let the irq handler process it for us */
else
{
i2c_tail->next = xfer;
i2c_tail = last;
}
restore_irq(cpsr);
}
/**
* DMA API implementation
*/
/* Used for DMA */
@ -53,7 +213,7 @@ struct i2c_dma_command_t
struct apb_dma_command_t dma;
/* PIO words */
uint32_t ctrl0;
/* copy buffer copy */
/* copy buffer pointers */
void *src;
void *dst;
/* padded to next multiple of cache line size (32 bytes) */
@ -67,31 +227,9 @@ __ENSURE_STRUCT_CACHE_FRIENDLY(struct i2c_dma_command_t)
/* Current transfer */
static int i2c_nr_stages;
static struct i2c_dma_command_t i2c_stage[I2C_NR_STAGES];
static struct mutex i2c_mutex;
static struct semaphore i2c_sema;
static uint8_t i2c_buffer[I2C_BUFFER_SIZE] CACHEALIGN_ATTR;
static uint32_t i2c_buffer_end; /* current end */
void INT_I2C_DMA(void)
{
/* reset dma channel on error */
if(imx233_dma_is_channel_error_irq(APB_I2C))
imx233_dma_reset_channel(APB_I2C);
/* clear irq flags */
imx233_dma_clear_channel_interrupt(APB_I2C);
semaphore_release(&i2c_sema);
}
void INT_I2C_ERROR(void)
{
/* reset dma channel on error */
if(imx233_dma_is_channel_error_irq(APB_I2C))
imx233_dma_reset_channel(APB_I2C);
/* clear irq flags */
imx233_dma_clear_channel_interrupt(APB_I2C);
semaphore_release(&i2c_sema);
}
static void imx233_i2c_reset(void)
{
/* clear softreset */
@ -107,10 +245,6 @@ static void imx233_i2c_reset(void)
BF_SET(I2C_CTRL1, ACK_MODE);
#endif
BF_SET(I2C_CTRL0, CLKGATE);
/* Fast-mode @ 400K */
HW_I2C_TIMING0 = 0x000F0007; /* tHIGH=0.6us, read at 0.3us */
HW_I2C_TIMING1 = 0x001F000F; /* tLOW=1.3us, write at 0.6us */
HW_I2C_TIMING2 = 0x0015000D;
}
void imx233_i2c_init(void)
@ -120,31 +254,27 @@ void imx233_i2c_init(void)
imx233_pinctrl_setup_vpin(VPIN_I2C_SCL, "i2c scl", PINCTRL_DRIVE_4mA, true);
imx233_pinctrl_setup_vpin(VPIN_I2C_SDA, "i2c sda", PINCTRL_DRIVE_4mA, true);
imx233_i2c_reset();
mutex_init(&i2c_mutex);
semaphore_init(&i2c_sema, 1, 0);
i2c_head = i2c_tail = NULL;
}
void imx233_i2c_begin(void)
static void imx233_i2c_begin(void)
{
mutex_lock(&i2c_mutex);
/* wakeup */
BF_CLR(I2C_CTRL0, CLKGATE);
i2c_nr_stages = 0;
i2c_buffer_end = 0;
}
enum imx233_i2c_error_t imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop)
static void imx233_i2c_add(bool start, bool transmit,
void *buffer, unsigned size, bool stop)
{
if(i2c_nr_stages == I2C_NR_STAGES)
return I2C_ERROR;
panicf("i2c: too many stages");
/* align buffer end on cache boundary */
uint32_t start_off = CACHEALIGN_UP(i2c_buffer_end);
uint32_t end_off = start_off + size;
if(end_off > I2C_BUFFER_SIZE)
{
panicf("die");
return I2C_BUFFER_FULL;
}
panicf("i2c: transfer is too big");
i2c_buffer_end = end_off;
if(transmit)
{
@ -175,7 +305,6 @@ enum imx233_i2c_error_t imx233_i2c_add(bool start, bool transmit, void *buffer,
XFER_COUNT(size), DIRECTION(transmit), SEND_NAK_ON_LAST(!transmit),
PRE_SEND_START(start), POST_SEND_STOP(stop), MASTER_MODE(1));
i2c_nr_stages++;
return I2C_SUCCESS;
}
static enum imx233_i2c_error_t imx233_i2c_finalize(void)
@ -190,10 +319,10 @@ static enum imx233_i2c_error_t imx233_i2c_finalize(void)
return I2C_SUCCESS;
}
enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout)
static void imx233_i2c_kick(void)
{
if(i2c_nr_stages == 0)
return I2C_ERROR;
panicf("i2c: empty kick");
i2c_stage[i2c_nr_stages - 1].dma.cmd |= BM_APB_CHx_CMD_SEMAPHORE | BM_APB_CHx_CMD_IRQONCMPLT;
BF_CLR(I2C_CTRL1, SLAVE_IRQ, SLAVE_STOP_IRQ, MASTER_LOSS_IRQ, EARLY_TERM_IRQ,
@ -203,15 +332,24 @@ enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout)
imx233_icoll_enable_interrupt(INT_SRC_I2C_ERROR, true);
imx233_dma_enable_channel_interrupt(APB_I2C, true);
imx233_dma_start_command(APB_I2C, &i2c_stage[0].dma);
}
enum imx233_i2c_error_t ret;
if(semaphore_wait(&i2c_sema, timeout) == OBJ_WAIT_TIMEDOUT)
{
static void imx233_i2c_abort(void)
{
/* FIXME there is a race condition here: if dma irq fires right before we
* reset the channel, it will most likely trigger an IRQ anyway. It is
* extremely unlikely but ideally, we should check this in the IRQ handler
* with an id/counter. */
imx233_dma_reset_channel(APB_I2C);
imx233_i2c_reset();
ret = I2C_TIMEOUT;
}
else if(BF_RD(I2C_CTRL1, MASTER_LOSS_IRQ))
imx233_i2c_transfer_complete(I2C_TIMEOUT);
}
static enum imx233_i2c_error_t imx233_i2c_end(void)
{
enum imx233_i2c_error_t ret;
/* check for various errors */
if(BF_RD(I2C_CTRL1, MASTER_LOSS_IRQ))
ret = I2C_MASTER_LOSS;
else if(BF_RD(I2C_CTRL1, NO_SLAVE_ACK_IRQ))
{
@ -229,48 +367,132 @@ enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout)
ret = imx233_i2c_finalize();
/* sleep */
BF_SET(I2C_CTRL0, CLKGATE);
mutex_unlock(&i2c_mutex);
return ret;
}
static void imx233_i2c_set_speed(bool fast_mode)
{
/* See I2C specification for standard- and fast-mode timings
* Clock is derived APBX which we assume to be running at 24 MHz. */
if(fast_mode)
{
/* Fast-mode @ 400 kHz */
HW_I2C_TIMING0 = 0x000f0007; /* HIGH_COUNT=0.6us, RCV_COUNT=0.2us */
HW_I2C_TIMING1 = 0x001f000f; /* LOW_COUNT=1.3us, XMIT_COUNT=0.6us */
HW_I2C_TIMING2 = 0x0015000d; /* BUS_FREE=0.9us LEADIN_COUNT=0.55us */
}
else
{
/* Standard-mode @ 100 kHz */
HW_I2C_TIMING0 = 0x00780030; /* HIGH_COUNT=5us, RCV_COUNT=2us */
HW_I2C_TIMING1 = 0x00800030; /* LOW_COUNT=5.3us, XMIT_COUNT=2us */
HW_I2C_TIMING2 = 0x00300030; /* BUS_FREE=2us LEADIN_COUNT=2us */
}
}
static void imx233_i2c_irq(bool err)
{
if(err)
panicf("i2c: dma error");
/* reset dma channel on error */
if(imx233_dma_is_channel_error_irq(APB_I2C))
imx233_dma_reset_channel(APB_I2C);
/* clear irq flags */
imx233_dma_clear_channel_interrupt(APB_I2C);
/* handle completion */
imx233_i2c_transfer_complete(imx233_i2c_end());
}
void INT_I2C_DMA(void)
{
imx233_i2c_irq(false);
}
void INT_I2C_ERROR(void)
{
imx233_i2c_irq(true);
}
/** Public API */
void i2c_init(void)
{
}
struct imx233_i2c_sync_xfer_t
{
struct imx233_i2c_xfer_t xfer;
struct semaphore sema;
volatile enum imx233_i2c_error_t status;
};
/* synchronous callback: record status and release semaphore */
static void i2c_sync_callback(struct imx233_i2c_xfer_t *xfer, enum imx233_i2c_error_t status)
{
struct imx233_i2c_sync_xfer_t *sxfer = (void *)xfer;
sxfer->status = status;
semaphore_release(&sxfer->sema);
}
static int i2c_sync_transfer(struct imx233_i2c_sync_xfer_t *xfer)
{
semaphore_init(&xfer->sema, 1, 0);
/* common init */
xfer->xfer.next = NULL;
xfer->xfer.callback = &i2c_sync_callback;
xfer->xfer.fast_mode = true;
xfer->xfer.tmo_ms = 1000;
/* kick */
imx233_i2c_transfer(&xfer->xfer);
/* wait */
semaphore_wait(&xfer->sema, TIMEOUT_BLOCK);
return (int)xfer->status;
}
int i2c_write(int device, const unsigned char* buf, int count)
{
uint8_t addr = device;
imx233_i2c_begin();
imx233_i2c_add(true, true, &addr, 1, false); /* start + dev addr */
imx233_i2c_add(false, true, (void *)buf, count, true); /* data + stop */
return imx233_i2c_end(10);
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_WRITE;
xfer.xfer.count[0] = count;
xfer.xfer.data[0] = (void *)buf;
xfer.xfer.count[1] = 0;
return i2c_sync_transfer(&xfer);
}
int i2c_read(int device, unsigned char* buf, int count)
{
uint8_t addr = device | 1;
imx233_i2c_begin();
imx233_i2c_add(true, true, &addr, 1, false); /* start + dev addr */
imx233_i2c_add(false, false, buf, count, true); /* data + stop */
return imx233_i2c_end(10);
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_READ;
xfer.xfer.count[0] = 0;
xfer.xfer.count[1] = count;
xfer.xfer.data[1] = buf;
return i2c_sync_transfer(&xfer);
}
int i2c_readmem(int device, int address, unsigned char* buf, int count)
{
uint8_t start[2] = {device, address};
uint8_t addr_rd = device | 1;
imx233_i2c_begin();
imx233_i2c_add(true, true, start, 2, false); /* start + dev addr + addr */
imx233_i2c_add(true, true, &addr_rd, 1, false); /* start + dev addr */
imx233_i2c_add(false, false, buf, count, true); /* data + stop */
return imx233_i2c_end(10);
uint8_t addr = address; /* assume 1 byte */
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_READ;
xfer.xfer.count[0] = 1;
xfer.xfer.data[0] = &addr;
xfer.xfer.count[1] = count;
xfer.xfer.data[1] = buf;
return i2c_sync_transfer(&xfer);
}
int i2c_writemem(int device, int address, const unsigned char* buf, int count)
{
uint8_t start[2] = {device, address};
imx233_i2c_begin();
imx233_i2c_add(true, true, start, 2, false); /* start + dev addr + addr */
imx233_i2c_add(false, true, (void *)buf, count, true); /* data + stop */
return imx233_i2c_end(10);
uint8_t addr = address; /* assume 1 byte */
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_WRITE;
xfer.xfer.count[0] = 1;
xfer.xfer.data[0] = &addr;
xfer.xfer.count[1] = count;
xfer.xfer.data[1] = (void *)buf;
return i2c_sync_transfer(&xfer);
}

View file

@ -24,7 +24,6 @@
#include "cpu.h"
#include "system.h"
#include "system-target.h"
#include "i2c.h"
enum imx233_i2c_error_t
{
@ -35,14 +34,71 @@ enum imx233_i2c_error_t
I2C_NO_SLAVE_ACK = -4,
I2C_SLAVE_NAK = -5,
I2C_BUFFER_FULL = -6,
I2C_SKIP = -7, /* transfer skipped before of previous error in transaction */
};
/** Important notes on the driver.
*
* The driver supports both synchronous and asynchronous transfers. Asynchronous
* transfer functions can safely be called from IRQ context. Beware that the completion
* callback of asynchronous transfers may be called from IRQ context.
*
* The driver supports queuing so it is safe to call several transfer functions
* concurrently.
*/
void imx233_i2c_init(void);
/* start building a transfer, will acquire an exclusive lock */
void imx233_i2c_begin(void);
/* add stage */
enum imx233_i2c_error_t imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop);
/* end building a transfer and start the transfer */
enum imx233_i2c_error_t imx233_i2c_end(unsigned timeout);
/** legacy API:
* read/write functions return 0 on success */
int i2c_write(int device, const unsigned char* buf, int count);
int i2c_read(int device, unsigned char* buf, int count);
int i2c_readmem(int device, int address, unsigned char* buf, int count);
int i2c_writemem(int device, int address, const unsigned char* buf, int count);
/** Advanced API */
struct imx233_i2c_xfer_t;
typedef void (*imx233_i2c_cb_t)(struct imx233_i2c_xfer_t *xfer, enum imx233_i2c_error_t status);
/** Transfer mode. There are currently two types of transfers, to make
* programming simpler:
* - write: write count[0] bytes from data[0], and then count[1] bytes from data[1]
* (if count[1] > 0). The second stage is useful to avoid allocating a single
* buffer to hold address + data for example.
* - read: write count[0] bytes from data[0], and then read count[1] bytes from data[1].
* If count[0] = 0 then the write stage is ignored.
*/
enum imx233_i2x_xfer_mode_t
{
I2C_WRITE,
I2C_READ,
};
/** This data structure represents one transfer. The exact shape of the transfer
* depends on the mode.
* NOTE a single transfer is limited to 512 bytes of data (RX + TX)
* A transaction is made up of several transfers, chained together.
*/
struct imx233_i2c_xfer_t
{
struct imx233_i2c_xfer_t *next; /* next transfer, or NULL */
imx233_i2c_cb_t callback; /* NULL for no callack */
int dev_addr; /* device address */
bool fast_mode; /* 400 kHz 'fast' mode or 100 kHz 'normal' mode */
enum imx233_i2x_xfer_mode_t mode; /* transfer mode */
int count[2]; /* count: depends on mode */
void *data[2]; /* data: depends on mode */
unsigned tmo_ms; /* timeout in milliseconds (0 means infinite) */
/* internal */
struct imx233_i2c_xfer_t *last; /* last in transaction */
};
/* Queue one or more tranfer. If several transfer are queued (transaction)
* they are guaranteed to be executed "as one" (ie without interleaving). Furthermore,
* if a transfer of the transfaction fails, the remaining transfers of the transactions
* will NOT be executed (and their callback will be called with SKIP status).
* Return 0 if queueing was successful. Note that the transfer may still fail,
* in which case the callback will have a nonzero status code. */
void imx233_i2c_transfer(struct imx233_i2c_xfer_t *xfer);
#endif // __I2C_IMX233_H__