1
0
Fork 0
forked from len0rd/rockbox

RTC s35380a - proper alarm support

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@28763 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Marcin Bukat 2010-12-07 22:04:02 +00:00
parent 1930e9f4ba
commit 3b6b4f9050

View file

@ -66,6 +66,35 @@
#define STATUS_REG2_INT1ME 0x40 #define STATUS_REG2_INT1ME 0x40
#define STATUS_REG2_INT1FE 0x80 #define STATUS_REG2_INT1FE 0x80
/* REALTIME_DATA register bytes */
#define TIME_YEAR 0
#define TIME_MONTH 1
#define TIME_DAY 2
#define TIME_WEEKDAY 3
#define TIME_HOUR 4
#define TIME_MINUTE 5
#define TIME_SECOND 6
#define TIME_REG_SIZE 7
/* INT1, INT2 register bytes */
#define ALARM_WEEKDAY 0
#define ALARM_HOUR 1
#define ALARM_MINUTE 2
#define ALARM_REG_SIZE 3
/* INT1, INT2 register bits */
#define A1WE 0x80
#define A1HE 0x80
#define A1mE 0x80
#define A2WE 0x80
#define A2HE 0x80
#define A2mE 0x80
#define AMPM 0x40
static bool int_flag;
static void reverse_bits(unsigned char* v, int size) static void reverse_bits(unsigned char* v, int size)
{ {
static const unsigned char flipnibble[] = static const unsigned char flipnibble[] =
@ -79,69 +108,82 @@ static void reverse_bits(unsigned char* v, int size)
} }
} }
void rtc_init(void) static inline void rtc_reset(void)
{ {
unsigned char status_reg; unsigned char reg = STATUS_REG1_RESET;
i2c_read(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1); i2c_write(I2C_IFACE_1, RTC_ADDR|(STATUS_REG1<<1), &reg, 1);
if ( (status_reg & STATUS_REG1_POC) ||
(status_reg & STATUS_REG1_BLD) )
{
/* perform rtc reset*/
status_reg |= STATUS_REG1_RESET;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1);
} }
/* setup 24h time format */ void rtc_init(void)
status_reg = STATUS_REG1_H1224; {
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1); unsigned char reg;
static bool initialized = false;
#ifdef HAVE_RTC_ALARM if ( initialized )
rtc_check_alarm_started(false); return;
#endif
/* disable all alarms */ i2c_read(I2C_IFACE_1, RTC_ADDR|(STATUS_REG1<<1), &reg, 1);
status_reg = 0;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &status_reg, 1); /* cache INT1, INT2 flags as reading the register seem to clear
* this bits (which is not described in datasheet)
*/
int_flag = ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2));
/* test POC and BLD flags */
if ( (reg & STATUS_REG1_POC) || (reg & STATUS_REG1_BLD))
rtc_reset();
i2c_read(I2C_IFACE_1, RTC_ADDR|(STATUS_REG2<<1), &reg, 1);
/* test TEST flag */
if ( reg & STATUS_REG2_TEST )
rtc_reset();
/* setup 24h time format */
reg = STATUS_REG1_H1224;
i2c_write(I2C_IFACE_1, RTC_ADDR|(STATUS_REG1<<1), &reg, 1);
initialized = true;
} }
int rtc_read_datetime(struct tm *tm) int rtc_read_datetime(struct tm *tm)
{ {
unsigned char buf[7]; unsigned char buf[TIME_REG_SIZE];
unsigned int i; unsigned int i;
int ret; int ret;
ret = i2c_read(I2C_IFACE_1, RTC_ADDR|(REALTIME_DATA1<<1), buf, sizeof(buf)); ret = i2c_read(I2C_IFACE_1, RTC_ADDR|(REALTIME_DATA1<<1), buf, sizeof(buf));
reverse_bits(buf, sizeof(buf)); reverse_bits(buf, sizeof(buf));
buf[4] &= 0x3f; /* mask out p.m. flag */ buf[TIME_HOUR] &= 0x3f; /* mask out p.m. flag */
for (i = 0; i < sizeof(buf); i++) for (i = 0; i < sizeof(buf); i++)
buf[i] = BCD2DEC(buf[i]); buf[i] = BCD2DEC(buf[i]);
tm->tm_sec = buf[6]; tm->tm_sec = buf[TIME_SECOND];
tm->tm_min = buf[5]; tm->tm_min = buf[TIME_MINUTE];
tm->tm_hour = buf[4]; tm->tm_hour = buf[TIME_HOUR];
tm->tm_wday = buf[3]; tm->tm_wday = buf[TIME_WEEKDAY];
tm->tm_mday = buf[2]; tm->tm_mday = buf[TIME_DAY];
tm->tm_mon = buf[1] - 1; tm->tm_mon = buf[TIME_MONTH] - 1;
tm->tm_year = buf[0] + 100; tm->tm_year = buf[TIME_YEAR] + 100;
return ret; return ret;
} }
int rtc_write_datetime(const struct tm *tm) int rtc_write_datetime(const struct tm *tm)
{ {
unsigned char buf[7]; unsigned char buf[TIME_REG_SIZE];
unsigned int i; unsigned int i;
int ret; int ret;
buf[6] = tm->tm_sec; buf[TIME_SECOND] = tm->tm_sec;
buf[5] = tm->tm_min; buf[TIME_MINUTE] = tm->tm_min;
buf[4] = tm->tm_hour; buf[TIME_HOUR] = tm->tm_hour;
buf[3] = tm->tm_wday; buf[TIME_WEEKDAY] = tm->tm_wday;
buf[2] = tm->tm_mday; buf[TIME_DAY] = tm->tm_mday;
buf[1] = tm->tm_mon + 1; buf[TIME_MONTH] = tm->tm_mon + 1;
buf[0] = tm->tm_year - 100; buf[TIME_YEAR] = tm->tm_year - 100;
for (i = 0; i < sizeof(buf); i++) for (i = 0; i < sizeof(buf); i++)
buf[i] = DEC2BCD(buf[i]); buf[i] = DEC2BCD(buf[i]);
@ -155,75 +197,76 @@ int rtc_write_datetime(const struct tm *tm)
#ifdef HAVE_RTC_ALARM #ifdef HAVE_RTC_ALARM
void rtc_set_alarm(int h, int m) void rtc_set_alarm(int h, int m)
{ {
/* 1) get the date unsigned char buf[ALARM_REG_SIZE];
* 2) compare h:m with current time
if alarm time < current time set day += 1 /* INT1 register can be accessed only when IN1AE flag is set */
3) check day if it is not needed to wrap around rtc_enable_alarm(true);
4) set the validity bits
5) write to alarm register /* A1mE, A1HE - validity flags */
buf[ALARM_MINUTE] = DEC2BCD(m) | A1mE;
buf[ALARM_HOUR] = DEC2BCD(h) | A1HE;
buf[ALARM_WEEKDAY] = 0;
/* AM/PM flag have to be set properly regardles of
* time format used (H1224 flag in STATUS_REG1)
* this is not described in datasheet for s35380a
* but is somehow described in datasheet for s35390a
*/ */
if ( h >= 12 )
unsigned char buf[3]; buf[ALARM_HOUR] |= AMPM;
unsigned char reg;
/* 0x80 - validity flag */
buf[2] = DEC2BCD(m) | 0x80;
buf[1] = DEC2BCD(h) | 0x80;
buf[0] = 0;
reverse_bits(buf, sizeof(buf)); reverse_bits(buf, sizeof(buf));
reg = STATUS_REG2_INT1AE;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg, 1);
i2c_write(I2C_IFACE_1, RTC_ADDR|(INT1_REG<<1), buf, sizeof(buf)); i2c_write(I2C_IFACE_1, RTC_ADDR|(INT1_REG<<1), buf, sizeof(buf));
} }
void rtc_get_alarm(int *h, int *m) void rtc_get_alarm(int *h, int *m)
{ {
unsigned char buf[3]; unsigned char buf[ALARM_REG_SIZE];
unsigned char reg,reg2;
i2c_read(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg, 1); /* INT1 alarm register can be accessed only when INT1AE is set */
rtc_enable_alarm(true);
reg2 = reg | STATUS_REG2_INT1AE; /* read the content of INT1 register */
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg2, 1);
i2c_read(I2C_IFACE_1, RTC_ADDR|(INT1_REG<<1), buf, sizeof(buf)); i2c_read(I2C_IFACE_1, RTC_ADDR|(INT1_REG<<1), buf, sizeof(buf));
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &reg, 1);
reverse_bits(buf, sizeof(buf)); reverse_bits(buf, sizeof(buf));
*h = BCD2DEC(buf[1] & 0x3f); /* mask out A1HE and PM/AM flag */ *h = BCD2DEC(buf[ALARM_HOUR] & 0x3f); /* mask out A1HE and PM/AM flag */
*m = BCD2DEC(buf[2] & 0x7f); /* mask out A1mE */ *m = BCD2DEC(buf[ALARM_MINUTE] & 0x7f); /* mask out A1mE */
rtc_enable_alarm(false);
} }
bool rtc_check_alarm_flag(void) bool rtc_check_alarm_flag(void)
{ {
unsigned char status_reg; unsigned char reg;
i2c_read(I2C_IFACE_1, RTC_ADDR | (STATUS_REG1<<1), &status_reg, 1); i2c_read(I2C_IFACE_1, RTC_ADDR|(STATUS_REG1<<1), &reg, 1);
return (status_reg & (STATUS_REG1_INT1 | STATUS_REG1_INT2)); return ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2));
} }
void rtc_enable_alarm(bool enable) void rtc_enable_alarm(bool enable)
{ {
unsigned char status_reg2; unsigned char reg = 0;
status_reg2 = enable ? STATUS_REG2_INT1AE:0;
i2c_write(I2C_IFACE_1, RTC_ADDR | (STATUS_REG2<<1), &status_reg2, 1); if (enable)
reg = STATUS_REG2_INT1AE;
i2c_write(I2C_IFACE_1, RTC_ADDR|(STATUS_REG2<<1), &reg, 1);
} }
bool rtc_check_alarm_started(bool release_alarm) bool rtc_check_alarm_started(bool release_alarm)
{ {
static bool run_before = false, alarm_state; static bool run_before;
bool rc; bool rc;
if (run_before) if (run_before)
{ {
rc = alarm_state; rc = int_flag;
alarm_state &= ~release_alarm; int_flag &= ~release_alarm;
} }
else else
{ {
rc = rtc_check_alarm_flag(); rc = int_flag;
run_before = true; run_before = true;
} }